
Computer Organization

Prof. Ravindra R. Patil
Assistant Professor, CSE

 25-Aug-18

S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE and Affiliated to VTU Belgaum.

25-Aug-18

25-Aug-18

25-Aug-18

Basic Input / Output Operations

• The data on which the instructions operate are
not necessarily already stored in memory.

• Data need to be transferred between processor
and outside world (disk, keyboard, etc.)

• I/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

 29-Aug-18

Program-Controlled I/O
• Read in character input from a keyboard and

produce character output on a display screen.
Rate of data transfer (keyboard, display,

processor)
Difference in speed between processor and

I/O device creates the need for mechanisms to
synchronize the transfer of data.

A solution: on output, the processor sends the
first character and then waits for a signal from
the display that the character has been
received. It then sends the second character.
Input is sent from the keyboard in a similar
way 29-Aug-18

29-Aug-18

D A T AIN D A T A OUT

SIN SOUT

K e yboard Display

Bus

Figure 2.19 Bus connection for processor , k e yboard, and display .

Processor

Program-Controlled I/O Example

Machine instructions that can check the state of
the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0
 Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
 Output from R1 to DATAOUT

29-Aug-18

Memory-Mapped I/O

• Some memory address values are used to
refer to peripheral device buffer registers. No
special instructions are needed. Also use
device status registers.

READWAIT Testbit #3, INSTATUS
 Branch=0 READWAIT
 MoveByte DATAIN, R1

Assumption – the initial state of SIN is 0 and the
initial state of SOUT is 1.

 29-Aug-18

Program that reads a line of characters & displays
it unit carriage return key to be pressed.

 Move #Loc,R0

• READ TestBit #3,INSTATUS

 Branch=0 READ

 MoveByte DATAIN,(R0)

• ECHO TestBit #3,OUTSTATUS

 Branch=0 ECHO

 MoveByte (R0),DATAOUT

 Compare #CR,(R0)+

 Branch!=0 READ
29-Aug-18

Stack and Queues

SP

Stack Bottom

Current
Top of Stack

TOS • LIFO

Last In First Out
0

4

8

12

16

28

32

36

40

20

24

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL

EMPTY

29-Aug-18

Stack and Queues

Push operation can be implemented as:

 Substract #4,SP

 Move NEWITEM,(SP)

Pop operation can be Implemented as:

 Move (SP),ITEM

 Add #4,SP

29-Aug-18

Stack after Push of one element

SP

Stack Bottom

Current
Top of Stack

TOS 0

4

8

12

16

28

32

26

40

20

24

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL

EMPTY

1 6 9 0

1 6 9 0

29-Aug-18

PUSH and POP USING AUTOINCREMENT AND
AUTODECREMENT

PUSH can implemented using auto decrement:

 Move NEWITEM,-(SP)

POP can implemented using auto increment:

 Move (SP)+,ITEM

29-Aug-18

STACK SIZE WITH address 2000 to 1500
PUSH AND POP

SAP Compare #2000,SP

 Branch>0 EMTERROR Routine for POP

 Move (SP)+,ITEM

SAH Compare #1500,SP

 Branch<=0 FULLERROR Routine for PUSH

 Move NEWITEM,-(SP)

29-Aug-18

Subroutines

• Perform a particular subtask many times on
different data values:- subroutine .

• To save the space in memory, only one copy of
such instructions are stored in memory.

• Any program that requires this subroutine will
simply branch to staring location of this.

• After subroutine execution, the calling
program must resume execution, after the
calling instruction in the called program.

30-Aug-18

Subroutines

• The way in which a computer makes it
possible to call and return from subroutines is
referred to as its subroutine linkage.

• The call instruction is special type of branch
instruction:

o Store the content of PC in the link Register

o Branch to the target address specified by the
instruction.

30-Aug-18

Subroutines

• The Return Instruction is a special branch
instruction:

o Branch to the address contained in the link
register.

30-Aug-18

Subroutines

30-Aug-18

Parameter Passing

• When calling a subroutine, a program must
provide to the subroutine the parameters, the
operands or addresses, to be used in the
computation.

• The exchange of information between a
calling program and a subroutine is referred as
parameter passing.

• There are two ways :
o Placed in registers

o Placed in memory locations: processor stack

01-Sept-18

Parameter Passing

• Passing parameter through processor registers is
straightforward and efficient.

 Example:

Calling program Subroutine

Move N,R1 LISTADD Clear R0

Move #NUM1,R2 LOOP Add (R2)+,R0

Move R0,SUM Decrement R1

 . Branch>0 LOOP

 . Return

01-Sept-18

Parameter Passing

• Passing parameter as address.

Move #Num1.-(SP) LISTADD MoveMultiple R0-R2,-(SP)

Move N,-(SP) Move 16(SP),R1

Call LISTADD Move 20(SP),R2

Move 4(SP),SUM Clear R0

Add #8,SP LOOP Add (R2)+,R0

 Decrement R1

 Branch>0 LOOP

 Move R0,20(SP)

 MoveMultiple (SP)+,R0-R2

 Return
01-Sept-18

Parameter Passing

01-Sept-18

The STACK Frame

• The stack frame, also known as activation
record is the collection of all data on the stack
associated with one subprogram call.

The stack frame generally includes the following
components:

• The return address.

• Argument variables passed on the stack.

• Local variables.

• Saved copies of any registers modified by the
subprogram that need to be restored.

01-Sept-18

The STACK Frame

01-Sept-18

The STACK Frame

• The stack pointer will change when a subprogram
does a push or pop operation.

• When this happens, the offset addresses
representing local automatic variables such as
4(SP) are no longer valid.

• One way to alleviate this problem is by using
the frame pointer.

01-Sept-18

The STACK Frame
 The Frame Pointer(FP):

• The frame pointer is another register that we
set to the address of the stack frame when a
subprogram begins executing.

• If the code refers to local variables as offsets
from the frame pointer instead of offsets from
the stack pointer, then the program can use
the stack pointer without complicating access
to auto variables.

• We would then refer to something in the stack
frame as offset(FP) instead of offset(SP)

01-Sept-18

Subroutine STACK Frame Example

01-Sept-18

Subroutine STACK Frame Example

• The first 2 instructions executed in subroutine are:

Move FP,-(SP)

Move SP,FP

• Space for the 3 Local variables is now allocated on
the stack by executing:

Subtract #12,SP

• The contents of R0 & R1 are pushed on to the Stack

• After the completion of Task by Subroutine it brings
SP back to FP value.

Add #12,SP
01-Sept-18

Subroutine STACK Frame Example

• The calling program is responsible for
removing the parameters from the stack
frame.

• The stack pointer now pointes to the old TOS,
and we are back to where we have started.

01-Sept-18

STACK Frame for Nested Subroutine

• The stack is the proper data structure for holding
return addresses when subroutines are called.

• Stack frames for nested subroutines build up on
the processor stack as they are called.

• Note that the saved contents of FP in the current
frame at the top of the stack are the frame
pointer contents for the stack frame of the
subroutine that called the current subroutine.

03-Sept-18

Nested Subroutine Example

03-Sept-18

03-Sept-18

