SJ P N Trust's
Hirasugar Institute of Technology, Nidasoshi.

Inculcating Values, Promoting Prosperity
Approved by AICTE and Affiliated to VTU Belgaum.

Computer Organization

Prof. Ravindra R. Patil

Assistant Professor, CSE

25-Aug-18

2.6.1 ASSEMBLER DIRECTIVES

1(H)

LOOP 112

S5UM 20K}

NUMI 208
NUM2Z 212

NUM#r 604

Maove NI
Move HNUMILR2
Clear RO
Add (R2).RO
Add #4,R2
Decremenmt R
Branch=(Lo
Move ROSUM

1 04

Figure 2.17 Memory arrangement for the
program in Figure 2.12.

25-Aug-18

Fthe assembler isto produce an object program according to NS AMHAUMAN, 51 by

¢ How to mterpret the names
¢ Where to place the instructions in the memory
¢ Where o place the data operands i the memory

25-Aug-18

Assembler directives

Statements that
renerate
machine
instructions

Assembler directives

AMemory
address
lahel
SUM

N
NUM

START

LOOP

Operation

EQU
ORIGIN
DATAWORD
RESERVE
ORIGIN
MOVE
MOVE
CLR

ADD

AL

DEC
BGTZ
MOVE
RETURN
END

Addressing
or data
information

200

2014

1000

400

100
N
FNUMI,R2
11
(R2),R0
#4112
Il
LOGP
RO,SUM

START

Figure 2.18 Assembly language representation for the program in

Figun: 2.17.

25-Aug-18

Basic Input / Output Operations

 The data on which the instructions operate are
not necessarily already stored in memory.

* Data need to be transferred between processor
and outside world (disk, keyboard, etc.)

* |/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

29-Aug-18

Program-Controlled 1/O

 Read in character input from a keyboard and
produce character output on a display screen.

»Rate of data transfer (keyboard, display,
processor)

» Difference in speed between processor and
1/O device creates the need for mechanisms to
synchronize the transfer of data.

» A solution: on output, the processor sends the
first character and then waits for a signal from
the display that the character has been
received. It then sends the second character.
Input is sent from the keyboard in a similar
way 29-Aug-18

Bus

Processor

DATAIN

SIN

Keyboard

DATAOUT

SOuUT

Display

Figure 2.19 Bus connection for processor, keyboard, and display

29-Aug-18

Program-Controlled 1/O Example

Machine instructions that can check the state of

the status flags and transfer data:
READWAIT Branch to READWAIT if SIN =0
Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT =0
Output from R1 to DATAOUT

29-Aug-18

Memory-Mapped I/O

* Some memory address values are used to
refer to peripheral device buffer registers. No
special instructions are needed. Also use
device status registers.

READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT
MoveByte DATAIN, R1

Assumption — the initial state of SIN is 0 and the
initial state of SOUT is 1.

29-Aug-18

Program that reads a line of characters & displays
it unit carriage return key to be pressed.

Move #Loc,RO
 READ TestBit #3,INSTATUS

Branch=0 READ

MoveByte DATAIN,(RO)

e ECHO TestBit #3,0UTSTATUS
Branch=0 ECHO
MoveByte (RO),DATAOUT
Compare #CR,(RO)+
Branch!=0 READ

29-Aug-18

Stack and Queues

e LIFO
Last In First Out

Current
Top of Stack
TOS

SP

Stack Bottom

12

20
24
28
32
36

[DS

&

FULL

Stack EMPTY

29-Aug-18

—_—

Stack and Queues

Push operation can be implemented as:
Substract #4,SP
Move NEWITEM,(SP)

Pop operation can be Implemented as:
Move (SP),ITEM
Add #4,SP

29-Aug-18

Stack after Push of one element

Current
Top of Stack
TOS

0)

4

8
12
16
—»-20

SP

24
28
32
26

[Stack Bottom]> 40

Y=o
1690
AN
N

FULL

1609

012

005

000

00 2

gajoaljoojoijw| o

001 /

Stack| EMPTY

29-Aug-18

—

PUSH and POP USING AUTOINCREMENT AND
AUTODECREMENT

PUSH can implemented using auto decrement:
Move NEWITEM,-(SP)

POP can implemented using auto increment:
Move (SP)+,ITEM

29-Aug-18

STACK SIZE WITH address 2000 to 1500
PUSH AND POP

SAP Compare #2000,SP |
Branch>0 EMTERROR _Routine for POP
Move (SP)+,ITEM

SAH Compare #1500,SP
Branch<=0 FULLERROR _ Routine for PUSH
Move NEWITEM,-(SP)

29-Aug-18

Memory i
location Callmmg program:

Parameter Passing

* When calling a subroutine, a program must
provide to the subroutine the parameters, the
operands or addresses, to be used in the
computation.

* The exchange of information between a
calling program and a subroutine is referred as

* There are two ways :
o Placed in registers
o Placed in memory locations: processor stack

01-Sept-18

Parameter Passing

e Passing parameter through processor registers is
straightforward and efficient.

Example:

Move N,R1 LISTADD Clear RO
Move #NUM1,R2 LOOP Add (R2)+,R0
Move RO,SUM Decrement R1

Branch>0 LOOP
Return

01-Sept-18

Parameter Passing

* Passing parameter as address.

Move #Num1.-(SP) LISTADD MoveMultiple RO-R2,-(SP)
Move N,-(SP) Move 16(SP),R1

Call LISTADD Move 20(SP),R2

Move 4(SP),SUM Clear RO

Add #8,SP LOOP Add (R2)+,RO

Decrement R1

Branch>0 LOOP

Move RO,20(SP)
MoveMultiple (SP)+,R0-R2

Return
01-Sept-18

Parameter Passing

Levld —| R

R1
[RO
Level 2 — | Return address

n

NUMI

Levl] —

(b) Top of stack at various times

01-Sept-18

The STACK Frame

* The stack frame, also known as activation
record is the collection of all data on the stack
associated with one subprogram call.

The stack frame generally includes the following
components:

e The return address.
 Argument variables passed on the stack.
e Local variables.

e Saved copies of any registers modified by the
subprogram that need to be restored.

01-Sept-18

The STACK Frame

SP -
{stack pointer) saved [RI]

saved [RO]

localvar3

localvar?2

localvarl

FP
(frame pointer) saved (FF]

Return address

called
subroutine

~-—— Old TOS

01-Sept-18

The STACK Frame

* The stack pointer will change when a subprogram
does a push or pop operation.

* When this happens, the offset addresses
representing local automatic variables such as
4(SP) are no longer valid.

* One way to alleviate this problem is by using
the

01-Sept-18

The STACK Frame

* The frame pointer is another register that we
set to the address of the stack frame when a
subprogram begins executing.

* |f the code refers to local variables as offsets
from the frame pointer instead of offsets from
the stack pointer, then the program can use
the stack pointer without complicating access
to auto variables.

 We would then refer to something in the stack
frame as offset(FP) instead of offset(SP)

01-Sept-18

Subroutine STACK Frame Example

SP
(stack pointer) ~ saved [R1]
saved [RO]
localvar3
localvar2
localvarl Stack
frame
FP . ———- saved [FF] > for
{frame pointer) called
Return address subroutine
paraml
param2 |
param3
param4
-=—-— (ld TOS
01-Sept-18

Subroutine STACK Frame Example

* The first 2 instructions executed in subroutine are:
Move FP,-(SP)

Move SP,FP

* Space for the 3 Local variables is now allocated on
the stack by executing:

Subtract #12,SP
 The contents of RO & R1 are pushed on to the Stack

* After the completion of Task by Subroutine it brings
SP back to FP value.

Add #12,SP

01-Sept-18

Subroutine STACK Frame Example

* The calling program is responsible for
removing the parameters from the stack
frame.

* The stack pointer now pointes to the old TOS,
and we are back to where we have started.

01-Sept-18

STACK Frame for Nested Subroutine

* The stack is the proper data structure for holding
return addresses when subroutines are called.

e Stack frames for nested subroutines build up on
the processor stack as they are called.

* Note that the saved contents of FP in the current
frame at the top of the stack are the frame
pointer contents for the stack frame of the
subroutine that called the current subroutine.

03-Sept-18

Nested Subroutine Example

e
LU N .
Main program

200 Move PARAM? -(5P)
204 Move PARAMI,-(SP)
206 Cal SUB!

013 Move (SP), RESULT
2016 Add 43,5P

i) pext instriction

First subroutine

2100 SUBI Move

2104 Move

2108 MoveMultiple

2112 Move
Move
Move

2160 Call

2164 Move
Mowve
MoveMultiple
Move
Return

FP,-(SP)
SP,FP
RO-R3,~(SP)
8(FP),R0
12(FP),R1

PARAMS3,—(SP)
SUB2
(SP)}+,R2

R33(FP)
(SP)+,R0-R3
(SP)+,FP

03-Sept-18

Second subroutine

3000 SUB2 Mowe FP-(SP)
Move SPFP
MoveMuttiple RO-R1,-(SP)
Move B(FP).R0
Move RL8(FP)
MoveMultiple ~(SP}+R0-RI
Move (SP)+FP
Return

FP —»

FP —

|

[R1] from SUBI

[RO] from SUB1

[FP] from SUB1

Stack
frame
for
second
subroutine

-+—(ld TOS

03-Sept-18

