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Third Semester B.E. Degree Examination, June 2012 
Engineering Mathematics – III  

 
Time: 3 hrs.                                                                                                    Max. Marks:100 

Note: Answer FIVE full questions, selecting  
            at least TWO questions from each part. 

 
PART – A 

1 a. 
 
 
 

b. 
 

c. 

Find the Fourier series of the function, 
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  (07 Marks) 

Find the half range cosine series for, )x(x)x(f   in  x0 . (06 Marks) 
Analyse harmonically the data given below and express ‘y’ in Fourier series upto the second 
harmonics: (07 Marks) 

x 0 60 120 180 240 300 360 
y 1.0 1.4 1.9 1.7 1.5 1.2 1.0 

 

 
2 a. 

 
 
 

b. 
 
 
 

 
 

c. 

Find the complex Fourier transform of f(x) where 
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  . (07 Marks) 

Find the Fourier cosine transform of the function, 
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   (06 Marks) 

Find the complex Fourier transform of 
22xae , a>0. Hence deduce that 2

2xe  is self reciprocal 
under the complex Fourier transform. (07 Marks) 
 

3 a. 
b. 
 
 

c. 

Find the general solution of, )yx(zq)xz(yp)zy(x 222  . (07 Marks) 
Form the partial differential equation by eliminating the arbitrary functions from, 

)ctx(g)ctx(fz  . (06 Marks) 

Solve 0
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  by the method of separation of variables. (07 Marks) 

 
4 a. 

 
b. 

 
c. 

Derive one-dimensional heat equation in standard form. (07 Marks) 

Solve the Laplace equation 0
y
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  for its various possible solutions, by the method 

of separation of variables. (06 Marks) 
A string is stretched tightly between two points at a distance ‘l’ apart. The motion of the 

string is started by displacing the string into the form 





 

l
xsinuu 0 , from which it is 

released from rest. Find the displacement u(x, t) of any point at a distance x from one end at 
any time t.   (07 Marks) 
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PART – B 

 
5 a. 

 
b. 
 

c. 
 

Using Regula-Falsi method, find a root of 01xxx 346   in (1, 2), correct to four 
decimal places. Carryout three iterations. (07 Marks) 
Apply Gauss-Seidel iterative method, to solve 20z5y2x  ; 12zy2x5  ; 

15z2y4x  . (06 Marks) 
Using power method, find the largest eigen value and the corresponding eigen vector of the 

matrix 
















300
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, starting with the initial eigen vector  T001 . (07 Marks) 

 
6 a. 

 

 
b. 
 
 

c. 
 

Find the values of f(38) and f(85) using suitable interpolation formulae, given  (07 Marks) 
x: 40 50 60 70 80 90 
y=f(x): 184 204 226 250 276 304 

Evaluate dxxcosxsin
1

0
   correct to two decimal places using Simpson’s 

rd
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 rule taking 

seven equidistant ordinates. (06 Marks) 
Fit an interpolating polynomial for the data: 

x: 0 1 4 8 10 
y = f(x): -5 -14 -125 -21 355 

using Newton’s general interpolation formula. Hence find f(2). (07 Marks) 
 

7 a. 
 
 
 
 

b. 
 
 

c. 

Obtain Euler’s equation for the variational problem in the form: 

0
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 . 

Modify this equation when f is independent of y. (07 Marks) 
Define a geodesic on a surface. Prove that the geodesics on a plane are straight lines. 
 (06 Marks) 

Solve the variational problem  dxyy
2
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  under the conditions y(0)=0, 2
2
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  . 

 (07 Marks) 
 

8 a. 
 

b. 
 

c. 

Find the z-transforms of, i)  nsin              ii)  ncos . (07 Marks) 

Find the inverse z-transform of, 
)4z)(2z(

z3z2 2


 . (06 Marks) 

Using z-transforms, solve 
1y6y5y n1n2n    with 0y0   and 1y1  . (07 Marks) 

 
* * * * * 
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