

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd SEM

Department of Mechanical Engineering

COURSE PLAN 2023-24

VII Semester

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept.
Course Plan
VII SEM

2023-24 Odd SEM

INSTITUTE VISION

"To be a preferred institution in Engineering Education by achieving excellence in teaching and research and to remain as a source of pride for its commitment to holistic development of individual and society"

INSTITUTE MISSION

"To continuously strive for the overall development of students, educating them in a state-of-the-art-infrastructure, by retaining the best practices, people and inspire them to imbibe real time problem solving skills, leadership qualities, human values and societal commitments, so that they emerge as competent professionals"

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

"To be the centre of excellence in providing education in the field of Mechanical Engineering to produce technically competent and socially responsible engineering graduates"

MISSION

"Educating students to prepare them for professional competencies in the broader areas of the Mechanical Engineering field by inculcating analytical skills, research abilities and encouraging culture of continuous learning for solving real time problems using modern tools"

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd SEM

Program Educational Objectives (PEOs)

The Graduates will be able to

- **PEO1:** Acquire core competence in Applied Science, Mathematics and Mechanical Engineering fundamentals to excel in professional career and higher study
- **PEO2:** Design, demonstrate and analyze the mechanical systems which are useful to society.
- **PEO3:** Maintain professional & ethical values, employability skills, multidisciplinary approach & an ability to realize engineering issues to broader social context by engaging in lifelong learning.

Program Specific Outcomes (PSOs)

- **PSO1:** Able to apply the basic principles of Mechanical Engineering in various practical fields to solve societal problems by engaging themselves in many state/national level projects.
- **PSO2:** Able to analyze and design basic mechanical system using relevant tools and techniques.
- **PSO3:** Able to resolve contemporary issues of industries through industry institute interaction and alumni social networks

Program Outcomes (POs)

- **PO1:** Engineering knowledge- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Problem analysis- Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:Design/development of solutions-** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:**Conduct investigations of complex problems- Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:**Modern tool usage- Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society- Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:**Environment and sustainability- Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:**Ethics- Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:Individual and team work-** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:**Communication- Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance- Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:**Life-long learning- Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd SEM

CONTENTS

Sl. No.	Торіс		Page No.	
1	Vision and Mission		ii	
2	PEOs, PSOs and POs		iii	
3	Departmental Resources		v	
4	Teaching Faculty Details		vi	
5	Academic Calendar		vii	
6	Scheme of Teaching & Examination		viii	
	Theory Course Plan		'	
1	Control Engineering	18ME71		
2	Computer Aided Design & Manufacturing	18ME72		
3	Total Quality Management -PE-2	18ME734		
4	Mechatronics-PE-3/PE-IV	18ME744		
5	Open Elective-B (Python Application Programming)	18CS752		
6	Project Work Phase-1 18MEP78			
	Laboratory – Course Plan and Viva Que	stions		
7	Computer Integrated Manufacturing Lab	18MEL76		
8	Design Lab	18MEL77		

S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd SEM

Departmental Resources

Department of Mechanical Engineering was established in the year 1996 and is housed in a total area of 2584.5 Sq. Meters.

Faculty Position

	i dedity i obition				
Sl. No.	Category	No. in position	Average experience		
1	Teaching faculty	09	20		
2	Technical staff	05	18		
3	Helper / Peons	03	14		

Major Laboratories

S.N.	Name of the laboratory	Area in Sq. Meters	Amount Invested (Rs.)
1	Basic Workshop Laboratory	170	438593
2	Fluid Mechanics Machinery Laboratory	172	775916.75
3	Energy Conversion Engg. Laboratory	173	1278158.2
4	Machine shop Laboratory	170	1372566.5
5	Foundry & Forging Laboratory	179	321057.11
6	Design Laboratory	73	365861
7	Heat & Mass Transfer Laboratory	148	524576
8	Metallography & Material Testing Laboratory	149	1102945.2
9	Mechanical Measurements & Metrology Laboratory	95	557593.75
10	CIM & Automation/CAMA Laboratory	66	5114658
11	Computer Aided Machine Drawing Laboratory	66	2197382
12	Computer Aided Engg Drawing Laboratory	66	2818657
13	Department/Other		2107430
14	Research Centre	73	640747
	Total	1527	19616142

S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd SEM

Teaching Faculty Details

S.N.	Faculty Name	Designation	Qualification	Area of specialization	Teaching Exp (in years)	Contact Nos.
1	Dr. S. C. Kamate	Principal	Ph. D	Thermal(Cogeneration)	32	9480849331
2	Dr. S. N. Topannavar	Assoc. Prof.	Ph. D	Thermal Power Engg.	24	9482440235
3	Prof. K. M. Akkoli	Assoc. Prof.	Ph. D	Thermal Power Engg.	19	9739114856
4	Prof. D. N. Inamdar	Asst. Prof	M Tech.(Ph. D)	Tool Engg	20	9591208980
5	Prof.M.S.Futane	Asst. Prof	M Tech.	Computer Integrated Manufacturing	17	9164105035
6	Prof.S. A. Goudadi	Asst. Prof	M Tech.	Design Engineering	15	9448876682
7	Prof.M.M.Shivashimpi	Asst. Prof	M Tech.(Ph.D)	Thermal Power Engg.	16	9742197173
8	Prof.M.A.Hipparagi	Asst. Prof	M Tech.(Ph.D)	Production Technology	14	7411507405
9	Prof. G. M. Zulapi	Asst. Prof	M Tech.	Product Design & Manufacturing	15	9480213587
10	Prof. P.M.Kokitakar	Asst. Prof	M Tech.	Design Engineering	05	8095048022

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd SEM

ACADEMIC CALENDAR OF EVENTS-01 (CoE-01) OF I & VII SEM FOR THE AY: 2023-24

VTU CoE Notification No.: VTU/BGM/ACA/2023-24/2668, Dated 25th Aug. 2023
 HSIT/NDS/HOD-Meeting-23/2022-23, Dated: 20th Sept. 2023

Calendar	Date	Events & Holidays
	14th Aug9th Sept.2023	One Month Internship for VI Semester completed students
Sun Mon Tue Wed Thu Fri Sat	4 th -14 th Sept. 2023	Commencement of I Semester & 11 days Students Induction Program (SIP)
3 4 5 6 7 8 9	11th Sept.2023	Commencement of VII Semester Classes
3 4 5 6 7 8 9 10 11 12 13 14 15 16	15th Sept.2023	Commencement of I Semester Classes
17 18 19 20 21 22 23 24 25 26 27 28 29 30	19th Sept.2023	GH: Varasiddhi Vinayaka Vrata
24 25 26 27 28 29 30	21st Sept. 2023	LH: Mahadasoha of Shri Math Nidasoshi
October -2023	28th Sept.2023	GH: Eid-Milad
Sun Mon Tue Wed Thu Fri Sat	2 nd Oct. 2023	GH: Gandhi Jayanthi
8 9 10 11 12 13 14	19th -21st Oct.2023	1 st IA Test
15 16 17 18 19 20 21 22 23 24 25 26 27 28	21st Oct. 2023	1st Feedback on Teaching-Learning (I & VII Sems.)
29 30 31	23 rd -24 th Oct. 2023	GH: Mahanavami, Ayudhapooja, Vijayadasami
November -2023	26th Oct. 2023	Display of 1st IA Test Marks
Sun Mon Tue Wed Thu Fri Sat	1st Nov. 2023	GH: Kannada Rajyothsava
5 6 7 8 9 10 11	10th -11th Nov. 2023	Lab IA Test-I (2021 & 2022 Scheme)
12 13 15 16 17 18	14 th Nov. 2023	GH: Balipadyami, Deepavali
19 20 21 22 23 24 25 26 27 28 29 30	23 rd -25 th Nov. 2023	2 nd IA Test
December -2023	25th Nov. 2023	2 nd Feedback on Teaching-Learning (I & VII Sems.)
Sun Mon Tue Wed Thu Fri Sat	29th Nov. 2023	Display of 2 nd 1A Test Marks
3 4 5 6 7 8 9	30th Nov. 2023	GH: Kanakadasa Jayanti
10 11 12 13 14 15 16	8th-9th Dec. 2023	International Conference
17 18 19 20 21 22 23 24 25 26 27 28 29 30	25th Dec. 2023	GH: Christmas
24 25 26 27 28 29 30	1st -3rd Jan. 2024	3 rd IA Test
January -2024	5 th Jan. 2024	Display of 3 rd IA Test Marks
Sun Mon Tue Wed Thu Fri Sat	4th -6th Jan. 2024	Lab IA Test-II (2018, 2021 & 2022 Scheme)
7 8 9 10 11 12 13	6th Jan. 2024	Last Working Day of the I & VII Semesters
14 15 16 17 18 19 20	8th - 19th Jan. 2024	VTU Practical Exams
21 22 23 24 25 26 27 28 29 30 31	12 th Jan. 2024	National Youth Day
February -2024	26 th Jan. 2024	Republic Day
Sun Mon Tue Wed Thu Fri Sat	22 nd Jan. 2024	Commencement of VTU SEE
4 5 6 7 8 9 10	13 th Feb.2024	Commencement of II Semester
11 12 3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	19 th Feb. 2024	Commencement of VIII Semester

IQAC Coordinator & Dean (Academics)

Nidasoshi, Taq: Hukkeri, Dist taka - 591 236

Phone:+91-8333-278887, Fax:278886, Web Word sit.ac.in, Mail:principal@hsit.ac.in

Principal

S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd SEM

VTU Scheme of Teaching and Examination

			ESVARAYA TECHNOLO Scheme of Teaching at	nd Examir	nation 2	018 -	19					
		Outcom	e Based Education(OBE) a (Effective from the	and Choice	Based	Credi	t Syster	n (CB	CS)			
VIIS	SEMESTER		(Effective from the	acauemic	year 20	10 – 1	"	172.5				70.0
					Teachi	ng Hour	/Week		Exam	ination	92	
Sl. No	Cours Cours	e and e code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
	DCC	18ME71	6 . 15		L	T	P	03	40		100	-
1	PCC	18ME/1	Control Engineering		3			03	40	60	100	3
2	PCC	18ME72	Computer Integrated Design and Manufacturing		3			03	40	60	100	3
3	PEC	18ME73X		20	3		-	03	40	60	100	3
4	PEC	18ME74X			3		1	03	40	60	100	3
5	OEC	18ME75X	Open Elective -B	525	3	227	200	03	40	60	100	3
6	PCC	18MEL76	Computer Integrated Manufacturing Lab	85		2	2	03	40	60	100	2
1,7	PCC	18MEL77	Design Lab			2	2	03	40	60	100	2
7	Project	18MEP78	Project Work Phase - 1	88			2	-	100		100	1
8	Internship	-	Internship	(If not con carried ou							s, it shall	be
				TOTAL	15	4	6	18	340	360	700	20
			Duefosi	onal Elective	1	×	3	88 700 3	× 111	80 4 111	à.	55 II II
Cour 18XX	rse code under X73X	Course Titl		Course co	ode	Cour	se Title	ME				
18M			Manufacture	18ME734		Total Quality Management						
			n and Robotics	18ME735		Operations Research						
18ME733 Computational Flu		onal Fluid Dynamics	5 1600,7040 2-100	6.7								
				nal Elective								
	rse code under X74X	Course Titl	le	Course co under 182		Cour	se Title					
18MI	E741		[anufacturing	18ME744		Mech	atronics					
18ME742 Emerging S		Emerging S Technologic	Sustainable Building Cooling	18ME745		Proje	ect Mana	gement				
						1						

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Specialization: Design Engg.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Subject Title	CONTROL	ENGINEERING	
Subject Code	18ME71	IA Marks	40
Number of Lecture Hrs /	05	Exam Marks	60
Total Number of Lecture	50	Exam Hours	03
			CREDITS - 03

FACULTY DETAILS:

Name: Prof. S. A. Goudadi Designation: Asst. Professor Experience: 16 Years

1.0 Prerequisite Subjects:

No. of times course taught: 03

Sl. No	Branch	Semester	Subject
01	Mechanical Engg.	I/II/III/IV	Engg Mathematics
02	Mechanical Engg.	V	Dynamics of Machines

2.0 Course Objectives

- To develop comprehensive knowledge and understanding of modern control theory, industrial automation, and systems analysis.
- To model mechanical, hydraulic, pneumatic and electrical systems.
- To represent system elements by blocks and its reduction techniques.
- To understand transient and steady state response analysis of a system.
- To carry out frequency response analysis using polar plot, Bode plot.
- To analyse a system using root locus plots.
- To study different system compensators and characteristics of linear systems.

3.0 Course Outcomes

On successful completion of this course, the students will be able to

Code	Course Outcome	Cognitive Level	POs
C401.1	Identify the type of control and control actions.	L3	1,2,6,7,12
C401.2	Develop the mathematical model of the physical systems.	L3	1,2,6,7,12
C401.3	Estimate the response and error in response of first and second order systems subjected standardinput signals.	L3	1,2,6,7,12
C401.4	Represent the complex physical system using block diagram and signal flow graph and obtaintransfer function.	L3	1,2,6,7,12
C401.5	Analyse a linear feedback control system for stability using Hurwitz criterion, Routh's criterion and root Locus technique in complex domain.	L3	1,2,6,7,12
C401.6	Analyse the stability of linear feedback control systems in frequency domain using polar plots, Nyquist and Bode plots.	L3	1,2,6,7,12
	Total Hours of instruction		50

4.0 Course Content

Module-1

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

Introduction: Components of a control system, Open loop and closed loop systems.

Types of controllers: Proportional, Integral, Differential, Proportional-Integral, and Proportional-Integral. Differential controllers.

Modelling of Physical Systems: Mathematical Models of Mechanical, Electrical, Thermal, Hydraulic Systems.

Module-2

Time domain performance of control systems: Typical test signal, Unit step response and time domain specifications of first order, second order system. Steady state error, error constants.

Module-3

Block diagram algebra, Reduction of block diagram, Signal flow graphs, Gain formula for signal flow graphs, State diagram from differential equations.

Module-4

Stability of linear control systems: Routh"s criterion, Root locus, Determination of phase margin and gain margin using root locus.

Module-5

Stability analysis using Polar plot, Nyquist plot, Bode plot, Determination of phase margin and gain margin using Bode plot.

5.0 Relevance to future subjects

Sl No	Semester	Subject	Topics
01	VII	Advance Control System	Observability, Controllability, State variables.

6.0 Relevance to Real World

Sl. No	Real World Mapping
01	Design of various components
02	Conduct investigations of complex Problems
03	Development of prototype models

7.0 Gap Analysis and Mitigation

Sl	Delivery	Details
No	Type	
01	Tutorial	Introduction, Feedback, Mathematical Models, Modelling of Mechanical Systems, Electrical Analogies of Mechanical Systems, Block Diagrams etc
02	NPTEL	Control Engineering: The Control Problem Different Kinds of Control Systems History of Feedback · Modern Control Problems

8.0 Books Used and Recommended to Students

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbook/s					
1 Automatic Control Systems		Farid G., Kuo B. C	McGraw Hill Education	10th Edition,2018	

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

2	Control systems	Manik D. N	Cengage	2017			
	Reference Books						
1	Modern control Engineering	K. Ogeta	Pearson	5th Edition, 2010			
2	Control Systems Engineering	Norman S Nice		Fourth Edition, 2007			
3	Modern control Systems	Richard C Dorf	Pearson	2017			
4	Control Systems Engineering	I J Nagrath, M Gopal	New Age International (P) Ltd	2018			
5	Control Systems Engineering	S Palani	Tata McGraw Hill Publishing Co Ltd	ISBN-13 97800706719			

9.0 Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

VSSUT, Smartzworld, Scribd, NPTEL.

10.0 Magazines/Journals Used and Recommended to Students

Sl.No	Magazines/Journals	website
1	IEEE Xplore: IEEE Control Systems Magazine	www.ieeexplore.ieee.org
2	Journal of Control Theory and Applications, Journal of Real-Time Image Processing etc	www.Springer.com

11.0 Examination Note

Assignment marks: 10 marks. **Question paper pattern IA exam:**

Answer two full questions Q1 or Q2 and Q3 or Q4 (15marks each). Total 30 Marks.

Question paper pattern Main exam:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

12.0 Course Delivery Plan

Module	Lecture No.	Content of Lecturer	% of Portion
	1	Introduction:	
	2	Components of a control system,	
	3	Open loop and closed loop systems.	
Madula 1	4	Proportional, Integral, Differential,	20
Module 1	5 Proportional-Integral,	Proportional-Integral,	20
	6	Proportional- Integral-Differential controllers.	
	7	Modelling of Physical Systems: Mathematical Models of Mechanical,	
	8	Electrical,	

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

	9	Thermal,	
	10	HydraulicSystems.	
	11	Time domain performance of control systems	
	12	Typical test signal,	
	13	Unit step response	
	14	Problems	
M- 4-1- 2	15	time domainspecifications of first order,	20
Module 2	16	Second order system.	20
	17	Steady state error,	
	18	Error constants.	
	19	Problems	
	20	Problems	
	21	Block diagram algebra,	
	22	Reduction of block diagram,	
	23	Problems	
	24	Signal flow graphs,	
M- J-1- 2	25	Problems	20
Module 3	26	Gain formula for signal flow graphs,	20
	27	Problems	
	28	State diagram from differential equations.	
	29	Problems	
	30	Problems	
	31	Stability of linear control systems: Routh"s criterion,	
	32&33	Root locus,	
	34&35	Problems	20
Module 4	36&37	Determination of phase margin and gain	20
	38&39	Problems	
	40	margin using root locus.	
	41&42	Stability analysis using Polar plot,	
M-3-1-5	43 & 44	Nyquist plot,	20
Module 5	45 & 46	Bode plot,	20
	47 & 48	Determination of phase margin and	
	49 & 50	gain margin using Bode plot.	

13.0 Assignments, Pop Quiz, Mini Project, Seminars

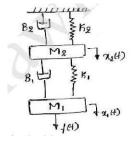
Sl. No	Title	Outcome expected	Allied study	Week No.	Individual / Group activity	Reference: book/website /Paper
1	Assignment 1: Questions on module 1	Students study the Topics and write the Answers. Get practice to solve questions.		3		Farid G., Kuo B.C and Katsuhiko Ogata
2	Assignment 2: Questions on module 2	Students study the Topics and write the Answers. Get practice to solve university questions.	Module 2 of the syllabus	5		Farid G., Kuo B. C and Katsuhiko Ogata
3	Assignment 3:	Students study the Topics and	Module	8	Individual	Farid G., Kuo B. C

TOTAL DESIGNATION OF THE PROPERTY OF THE PROPE

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME


Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

	Questions on	write the Answers. Get practice to	3 of the		Activity.	and Katsuhiko Ogata
	module 3	solve university questions.	syllabus			
	Assignment 4:	Students study the Topics and	Module		Individual	Farid G., Kuo B. C
4	Questions on	write the Answers. Get practice to	4 of the	10		and Katsuhiko Ogata
	module 4	solve university questions.	syllabus		Activity.	and Katsumko Ogata
	Assignment 5:	Students study the Topics and	Module		In dividual	Farid G., Kuo B. C
5	Questions on	write the Answers. Get practice to	5 of the	12		and Katsuhiko Ogata
	module 5	solve university questions.	syllabus		Activity.	and Katsumko Ogata

14.0 QUESTION BANK

MODULE 1

- 1) Define control system
- 2) Explain control system with block diagram and examples.
- 3) Explain Open loop control system
- 4) Explain Closed loop control system
- 5) Explain the components of control system
- 6) Explain the following controllers with block diagrams
 - i) Proportional controller
 - ii) Integral controller
 - iii) Proportional controller plus Integral controller
 - iv) Proportional controller plus Integral plus differential controller
- 7) Write the force-voltage and force- current analogous circuit for the mechanical system shown in figure.

MODULE 3

- 1) Define the following for an under damped second order system.
 - a) Rise Time b) Peak overshoot c) Settling Time.
- 2) Define the following terms
 - a) Transient response b) steady state response.
- 3) Derive the expression for peak time.
- 4) The loop transfer function of transfer function is given by
 - i) Determine the static error coefficients
 - ii) Determine steady state error coefficients for the input $r(t) = 2t_2 + 5t + 10$

$$G(S)H(S) = \frac{100}{S^2(S+4)(S+12)}$$

5) Derive expressions for peak response time t_pand maximum overshoot M_p of an under damped second order control system subjected to step input

For a unity feedback control system with $G(s) = \frac{10(S+2)}{S^2(S+1)}$ Find

i) The static error coefficients

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

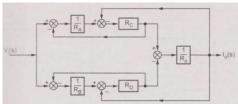
Approved by AICTE, Recognized by Govt of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

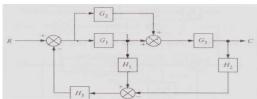
Mech. Engg. Dept.

Course Plan

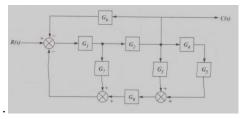
VII SEM

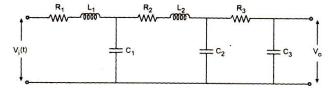

2023-24 Odd Sem

ii) Steady state error when the input transform is


$$R(S) = \frac{3}{S} - \frac{2}{S^2} + \frac{1}{3S^2}$$

MODULE 3


1) Determine the transfer function C(s)/R(s) of the system shown below by block diagram reduction method.


2) Determine the transfer function C(s)/R(s) of the system shown below by block diagram reduction method.


3) Determine the transfer function C(s)/R(s) of the system shown below by block diagram reduction method.

- 4) Discuss rule of block reduction technique in detail.
- 5) Draw a block diagram to describe the electrical circuit given in the Fig.

6) Obtain the overall transfer function for the block diagram shown below by the block diagram reduction technique.

7) Obtain MGF.

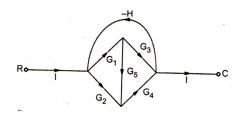
Tel for the state of the state

Hirasugar Institute of Technology, Nidasoshi

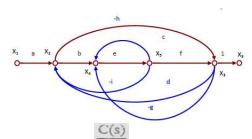
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC

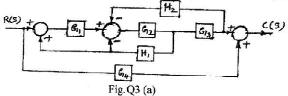

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

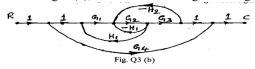
Mech. Engg. Dept.


Course Plan

VII SEM


2023-24 Odd Sem


8) For the system described by the signal flow graph shown in fig, obtain the closed loop transfer function C(s) / R(s), using Mason's gain formula.


9) For the system shown in Fig.3 below determine R(s) using Mason's gain formula.

9) Obtain the closed loop transfer function of the block diagram shown in Fig. 3 (a).

11) For the signal flow graph shown in Fig. 3 (b), determine C/R using mason's gain formula.

MODULE 4

- 1) Sketch the root locus plot for the system, whose open loop transfer function is given by $G(s)H(s)=K/(S(S+2)(S^2+8S+20))$.
- 2) State the different rules for the construction of root locus.
- 3) Sketch the root locus diagram of a control system having unity feedback with G(s) = K(s+1)/s(s-1)/(s+4s+16) and Comment on the stability of the system. Also find the frequency of oscillation.
- 4) Draw the root locus plot using guidelines for the OLTFG(s)H(s)=K(S+2)/(S(S2+2S+2)) Discuss stability of the system as a function of K.
- 5) Sketch the root locus for the system having G(s) = k(s+1)/s2(s+2).

STO D TEN

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM

2023-24 Odd Sem

6) Sketch the Bode plot for G(s)H(s) = 2/((S(S+1)(1+0.2S))) Also obtain gain margin and phase margin and crossover frequencies.

7) A unity feedback system has G(S)=K/(S(S+1)(S+10)) .

MODULE 5

- 1) Draw Bode plot and determine the value of K so that the gain margin of the system is 20db.
- 2) Construct bode dig for a feedback control system having its open loop transfer function. GH 100(10s+1)/(s(s+0.4)(s+1)(s+10)). Also determine gain margin and phase margin if the system is stable.
- 3) Sketch the polar plot for GH(S)=1/((S+P1)(S+P2)) where P1, P2> 0.
- 4) The OLTF of a system is given by Sketch the Nyquist plot for T1< T2and ascertain system stability.

$$G(S)H(S) = \frac{K(T_1S + 1)}{S^2(T_2S + 1)}$$

- 5) Sketch the polar plot for the transfer function G(S)=10/(S(S+1)(S+2))
- 6) Apply Nyquist stability criterion to the system with transfer function G(s)H(s) = 4S+1/((S2(1+S)(1+2S))) and ascertain its stability.
- 7) Determine stability of the system with GH=(s+6)/((s+2)(s-1)) using nyquist stability criterion.
- 8) Draw polar plot for the following system GH=20(s+5)/((s+1)(s+2)(s+8))

Prepared by		
Qului	Note	Down .
Prof. S. A. Goudadi	HOD	Principal

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Subject Title	COMPUTER AIDEI	DESIGN & MANUFACTURING		
Subject Code	18ME72	CIA Marks	40	
No of Lecture Hrs + Practical Hrs / Week	03	Exam Marks	60	
Total No of Lecture + Practical Hrs	40	Exam Hours	03	
CREDITS - 04				

FACULTY DETAILS:		
Name: Prof. M S Futane	Designation: Asst. Professor	Experience: 18Years
No. of times course taught: 12 Times	Spec	cialization: Computer Integrated Manufacturing

1.0 Prerequisite Subjects:

Sl. No	Branch	Semester	Subject
1	Common to all	I/II	Elements of Mechanical Engg
2	Mechanical Engineering	III/IV	MCW, MCF

2.0 Course Objectives

- To impart knowledge of CIM and Automation and different concepts of automation by developing mathematical models.
- To make students to understand the Computer Applications in Design and Manufacturing [CAD / CAM) leading
 to Computer integrated systems. Enable them to perform various transformations of entities on display devices.
- To expose students to automated flow lines, assembly lines, Line Balancing Techniques, and Flexible Manufacturing Systems.
- To expose students to computer aided process planning, material requirement planning, capacity planning etc.
- To expose the students to CNC Machine Tools, CNC part programming, and industrial robots.
- To introduce the students to concepts of Additive Manufacturing, Internet of Things, and Industry 4.0 leading to Smart Factory.

3.0 Course Outcomes

Having successfully completed this course, the student will be able to

СО	Course Outcome	Cognitiv e Level	POs
CO1	Define Automation, CIM, CAD, CAM and explain the differences between these concepts. And Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines		PO1,PO6, PO10, PO11, PO12
CO2	Solve simple problems of transformations of entities on computer screen and Categorize CAPP, MRP, PPC and CRP in Manufacturing system		PO2,PO5, PO10, PO12
СОЗ	Understand the overall FMS and Solve the manual assembly line balancing problem		PO1,PO2,PO3, PO5, PO11, PO12
C04	Explain the use of different computer applications in manufacturing, and prepare part programs for simple jobs on CNC machine tools and robot programming.	12 12	PO1,PO2,PO3, PO5, PO10, PO11, PO12
C05	Visualize and appreciate the modern trends in Manufacturing like additive manufacturing, Industry 4.0 and applications of Internet of Things leading to Smart Manufacturing	L1, L2	PO1,PO2,PO3, PO5, PO10, PO11, PO12
	Total Hours of instruction		50

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Course Plan
VII SEM
2023-24 Odd Sem

Mech. Engg. Dept.

4.0

Course Content

Module - 1

1. Introduction to CIM and Automation:

Automation in Production Systems, automated manufacturing systems- types of automation, reasons for automating, Computer Integrated Manufacturing, computerized elements of a CIM system, CAD/CAM and CIM. Mathematical models and matrices: production rate, production capacity, utilization and availability, manufacturing lead time, work-in-process, numerical problems. **5 Hours**

2. Automated Production Lines and Assembly Systems: Fundamentals, system configurations, applications, automated flow lines, buffer storage, control of production line, analysis of transfer lines, analysis of flow lines without storage, partial automation, analysis of automated flow lines with storage buffer, fundamentals of automated assembly systems, numerical problems. **5 Hours**

Module - 2

- **3. CAD and Computer Graphics Software:** The design process, applications of computers in design, software configuration, functions of graphics package, constructing the geometry. Transformations: 2D transformations, translation, rotation and scaling, homogeneous transformation matrix, concatenation, numerical problems on transformations. **5 Hours**
- **4. Computerized Manufacture Planning and Control System:** Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAPP, Production Planning and Control Systems, typical activities of PPC System, computer integrated production management system, Material Requirement Planning, inputs to MRP system, working of MRP, outputs and benefits, Capacity Planning, Computer Aided Quality Control, Shop floor control. **5 Hours**

Module - 3

- **5. Flexible Manufacturing Systems:** Fundamentals of Group Technology and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, computer control systems, FMS planning and design issues, Automated Storage and Retrieval Systems, AS/RS and Automatic parts identification systems and data capture. **5 Hours**
- **6. Line Balancing:** Line balancing algorithms, methods of line balancing, numerical problems on largest candidate rule, Kilbridge and Wester method, and Ranked Positional Weights method, Mixed Model line balancing, computerized line balancing methods. **5 Hours**

Module - 4.

- **7. Computer Numerical Control:** Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations. **5 Hours**
- **8. Robot Technology:** Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics.Robot programming methods: on-line and off-line methods.Robot industrial applications: material handling, processing and assembly and inspection.**5 Hours**

Module – 5

9. Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies, Additive manufacturing processes: Photo polymerization, material jetting, binder

jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct energy deposition techniques, applications of AM. Recent trends in manufacturing, Hybrid manufacturing. 5 Hours

10. Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supplychain & logistics, cyber-physical manufacturing systems. 5 Hours

5.0 Relevance to future subjects

SL. No	Semester	Subject	Topics / Relevance	
01	V	Additive Manufacturing	all	
02	VIII	Project Work	Implementation of Mechanisms, automation	

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

6.0 Relevance to Real World

SL. No	Real World Mapping		
01	Industrial design & mechanisms of various components		
02	Various setups for analysis		
03	Development of a software applications		

7.0 Gap Analysis and Mitigation

Sl. No	Delivery Type	Details
01	Tutorial	Topic: Automated Transfer lines and Assembly system

7.0 Books Used and Recommended to Students

Text Books

- 1. Automation, Production Systems and Computer-Integrated Manufacturing, by Mikell
- P Groover, 4th Edition, 2015, Pearson Learning.
- $2.\ CAD\ /\ CAM$ Principles and Applications by P N Rao, 3rd Edition, 2015, Tata McGraw-Hill.
- 3. CAD/CAM/CIM, Dr. P. Radhakrishnan, 3rd edition, New Age International

Publishers, New Delhi.

Reference Books

- 1. "CAD/CAM" by Ibrahim Zeid, Tata McGraw Hill.
- 2. "Principles of Computer Integrated Manufacturing", S.Kant Vajpayee, 1999, Prentice Hall of India, New Delhi.
- 3. "Work Systems And The Methods, Measurement And Management of Work", Groover M. P., Pearson/Prentice Hall, Upper Saddle River, NJ, 2007.
- 4. "Computer Automation in Manufacturing", Boucher, T. O., Chapman & Hall, London, UK, 1996.
- 5. "Introduction to Robotics: Mechanics And Control", Craig, J. J., 2nd Ed., Addison-Wesley Publishing Company, Readong, MA, 1989.
- 6. Internet of Things (IoT): Digitize or Die: Transform your organization. Embrace the digital evolution. Rise above the competition, by Nicolas Windpassinger, Amazon.
- 7. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press)
- 8. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd Ed. (2015), Ian Gibson, David W. Rosen, Brent Stucker
- 9. "Understanding Additive Manufacturing", Andreas Gebhardt, Hanser Publishers, 2011
- 10. Industry 4.0: The Industrial Internet of Things, Apress, 2017, by Alasdair Gilchrist

Additional Study material & e-Books

1.Nptel.ac.in

2.VTU, E- learning

8.0

Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

- 1.http://www.nptel.ac.in
- 2.www.journals.elsevier.com
- 3.www.youtube.com
- 4.https://www.researchgate.net/journal
- 5.https://books.google.co.in/books?isbn

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

9.0 Magazines/Journals Used and Recommended to Students

Sl.No	Magazines/Journals	website
1	Robotics and Computer-Integrated Manufacturing - ScienceDirect.com	www.sciencedirect.com/science/journal/07365845
2	Manufacturing, Modelling, Management and Control 2004	https://books.google.co.in/books?isbn=0080445624
3	International Journal of Computer Integrated Manufacturing	www.tandfonline.com/toc/tcim20
4	Computer Integrated Manufacturing	manufacturingscience.asmedigitalcollection.asme.org

10.0 Examination Note

Internal Assessment: 40 Marks

Theoretical aspects as well as relevant sketches should be drawn neatly for questions asked in Internal Assessments

Scheme of Evaluation for Internal Assessment

Internal Assessment test in the same pattern as that of the main examination :40marks.

SCHEME OF EXAMINATION:

There are five modules two questions from each module

Student has to answer any five question choosing at least one questions from each module.

Max. Marks: 100Marks

11.0 Course Delivery Plan

Module No.	Lecture No.	Content of Lecture	% of Portion			
		Introduction to CIM and Automation & Automated Production Lines and Assembly Systems				
	1	Automation definition, advantages of automation, types of automation.				
	2	Levels of Automation, Automation strategies.				
	3	CIM processing in manufacturing.				
	4	Mathematical Models- CT, Production rate, Production capacity, MLT,, WIP, & TIP ratio	20			
1	5	Problems using mathematical models	20			
	6	Introduction, Automated flow line, objectives				
	7	Flow line configurations, work part transport methods				
	8	Work part transfer mechanisms				
	9	Need for buffer storage, Automation for machining				
	10	Quality ,Automation for machining operation				
		CAD and Computer Graphics Software & Computerized Manufacture Planning and Control System				
	11	The design process.				
2	12	software configuration, functions of graphics package				
	13	Transformations: 2D transformations, translation, rotation and scaling	20			
	14	homogeneous transformation matrix, concatenation				
	15	numerical problems on transformations				
	16	Velocity Analysis by Instantaneous Center Method: Definition, Kennedy's theorem,				
	17	Introduction, CAPP, Retrieval CAPP				

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

	18	Generative CAPP, Advantages/Benefits of CAPP,MRP concepts & Terminology				
	19	Stricture/Flow chart of MRP, Inputs to MRP				
	20	MRP system output, BOM, Parameters in MRP system				
		Flexible Manufacturing Systems & Line Balancing				
	21	Fundamentals of Group Technology and Flexible Manufacturing Systems				
	22	types of FMS, FMS components, Material handling and storage system,				
	23	FMS planning and design issues				
	24	Automated Storage and Retrieval Systems, AS/RS				
3	25	Automatic parts identification systems and data capture	20			
3	26	Line balancing algorithms	20			
	27	Different terms involved in Assembly line balancing problem: Precedence diagram, Balance delay, Balance efficiency				
	28	Assembly line balancing by largest candidate rule method				
	29	Assembly line balancing by Kilbridge & Westers method				
	30	Assembly line balancing by Ranked positional weight method, computerized line balancing				
		Computer Numerical Control & Robot Technology				
	31	NC terminology, Basic components of NC system				
	32	NC coordinate systems. NC motion control systems,				
	33	Applications of NC system, Advantages & Limitations of NC systems				
	34	CNC, need for CNC, different functions of CNC system, Advantages of CNC systems. CNC Machining centres steps in CNC programming.				
4	35	Different codes used in the development of NC part programming. The fundamental steps involved in the development of milling part program.				
	36	Basic Robot motions				
	37	Technical features of Robots, Power supply or drive systems for robots				
	38	End effectors, Work cell control				
	39	Robot programming, Robot programming languages				
	40	Robot Applications ,Application areas for Robots				
		Additive Manufacturing Systems & Future of Automated Factory				
	41	Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies,				
	42	Additive manufacturing processes: Photo polymerization, material jetting, binder jetting,				
_	43	material extrusion, Powder bed sintering techniques, sheet lamination,				
5	44	direct energy deposition techniques, applications of AM.	20			
	45	Recent trends in manufacturing, Hybrid manufacturing				
	46	Industry 4.0, functions, applications and benefits				
	47	Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing,				
	48	Big-Data and Cloud Computing for IOT, IOT for smart manufacturing,				
	49	influence of IOT on predictive maintenance, industrial automation,				
	50	supply chain optimization, supply-chain & logistics, cyber-physical manufacturing system				
	•					

12.0 Assignments, Pop Quiz, Mini Project, Seminars

Sl.N o.	Title	Outcome expected: students able to	Allied study	Week No.	Individual / Group activity	Reference: book/website /Paper
1	Assignment - 1: Questions on Introduction to CIM and Automation & Automated Production Lines and Assembly Systems	Students study the Topics and write the Answers. Get practice to solve university questions.	Module 1	2	Individual Activity.	Books or Website of the Reference list

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

2	Assignment-2:	Students study the		4	Individual Activity.	Books or
	Questions on CAD and Computer	Topics and write the	e 2			Website of
	Graphics Software &	Answers. Get practice	Module			the
	Computerized Manufacture	to solve university	Mo			Reference
	Planning and Control System	questions.				list
3	Assignment-3:	Students study the		6	Individual Activity.	Books or
	Questions on Flexible	Topics and write the	e 3			Website of
	Manufacturing Systems & Line	Answers. Get practice	Module 3			the
	Balancing	to solve university	Mo			Reference
		questions.				list
4	Assignment-4:	Students study the		8	Individual Activity.	Books or
	Questions on Computer	Topics and write the	e 4			Website of
	Numerical Control & Robot	Answers. Get practice	Module 4			the
	Technology	to solve university	Mo			Reference
		questions.				list
5	Assignment-5:	Students study the		8	Individual Activity.	Books or
	Questions on Additive	Topics and write the	e 5			Website of
	Manufacturing Systems & Future	Answers. Get practice	Module			the
	of Automated Factory	to solve university	Mc			Reference
		questions.				list

13.0

OUESTION BANK

MODULE-1:

- 1) Define Automation.
- 2) What are the benefits of Automation?
- 3) Differentiate between Fixed Automation & Programmable Automation.
- 4) Explain Flexible Automation, write down its applications.
- 5) Explain the different levels of Automation.
- 6) Briefly explain the Automation strategies.
- 7) Write a note on Automation approach.
- 8) In manufacturing activity how the cycle time is calculated?
- 9) Explain in detail production rate & batch processing time with mathematical equations
- 10) Explanation Production capacity with mathematical equations
- 11) With a neat diagram explain the Information processing in Manufacturing.
- 12) The average part produced in a certain batch manufacturing plant must be processed through an average six machines.
- 20 new batches are launched each week. Average operation time is 6 min, average set-up time is 5 h, average batch size is
- 25 parts, and average non-operation time per batch is 10 h/machine. There are 18 machines in the plant. The plant operates an average of 70 production hours per week. Scarp rate is negligible. Determine:
- a)Manufacturing lead time for an average part. b) Production rate c) Plant capacity d) Plant utilization e)WIP f)WIP ratio g)TIP ratio
- 13) A certain part is produced in the batch size of 100 units. The batch must be routed through 5 operations to complete the proceeding of the plant. Average setup time is 3hrs per operation & avg operation time is 6mins. Avg. non-operation time due to handling, delays, inspections etc is 7hrs for each operation. Determine how many days it will take to complete the batch, assuming the plant runs one 8hrs shift per day.
- 14) An average 20 new orders are started each month in a factory. On an avg. an order consist of 50 parts to be processed through 10 m/cs. Avg. Operation time is 15min,avg setup time is 4hrs, average non operation time per order is 8hr per m/c. There are 25 m/c in the plant.80% of which are operational at any time (20% in repair) the plant operates an average of 160 production hrs per month. However the plant manager complaints that a total of 100 over time m/c hrs must be authorized each month in order to keep up with the production schedule. Determine MLT for an average order, PC & why overtime is authorized, U, average level of WIP, the operation time per m/c for each part=15min.
- 15) Explain the following terms related to manufacturing: i) WIP & TIP ratio, ii) Production rate & MLT, iii) Utilization & Availability.

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 16) Define cycle time, draw the sketch showing all the details, write down the mathematical equation to calculate the cycle time
- 17) How line efficiency of a flow line is calculated?
- 18) What is meant by cost per piece & production rate
- 19) Explain Upper bound approach in detail
- 20) Explain Lower bound approach in detail
- 21) A machine tool builder submits a proposal for a 20 station transfer line to machine a certain component produced by conventional methods. The proposal starts that the line will operates at a production rate of 50 pieces per hour at 100% efficiency. On similar transfer lines, the probability of station break downs per cycle is equal for all stations & p=.005 breakdowns/ cycle. It is also estimated that average down time per line stop will be 8 min. The starting casting that is machined on the line costs \$3 per part. The line operates of \$75 per hour. The 20 cutting tools (one tool per station) last foe 50 parts each,& the average cost per tool \$2 per cutting edge. Based on this data, compute i)production rate ii)line efficiency & iii)cost per unit piece produced
- 22) What is meant by blocking or starving in the flow line
- 23) A 10 station automated flow line has 2 stages of 5 stations each. The ideal cycle time of each stage is 1.5min. The average constant down time is 10min. 7 all the stations have the same probability of stopping, which is 0.005. Determine i) line efficiency ii) production rates with buffer storage capacity of a)b=0 b)b= \Box iii)b=50.

A 20 station transfer flow line is divided into 2 stages of 10 stations each. The ideal cycle of each stage is Tc = 1.2 min. All of stations in the line have the same probability of stopping, p=0.005. We assume the down time is constant when a break down occurs, Td=8 min. Compute the line efficiency for the following buffer capacities I b=0 ii b=10 iv b=100. 24) Using the lower bound approach analyze the transfer lines with & without storage cases.

25) With suitable assumptions, determine the line performance for the single & three stages cases.

Station	P _i	Station	P_{i}
1	0.01	9	0.03
2	0.02	10	0.01
3	0.01	11	0.02
4	0.03	12	0.02
5	0.02	13	0.02
6	0.04	14	0.01
7	0.01	15	0.03
8	0.01	16	0.01

- 26) Give the reasons for the down time, on an automated production line.
- 27) Discuss the limits of storage buffer effectiveness.
- 28) Discuss the striving & blocking of stations with respect to automated flow lines.
- 29) Compare on the basis of cost/ unit & suggest whether the performance of 10 stations transfer line having 6 automated & 4 manual stations with an automated station. Cost for the existing line: i) $C_m = Rs \ 0.5$ / unit, ii) $T_c = 30$ seconds, iii) $C_o = Rs \ 0.15$ / minute, iv) Rs 0.10/ minute, v) $C_{at} = Rs \ 0.10$ / minute & vi) Ct= Rs 0.08/ minute.
- 30) What is the purpose of buffer storage? Mention 2 extreme cases of buffer effectiveness automated flow lines.
- 31) What are the 2 reasons for partial automation? Analyze the performance of partial automation along the suitable assumptions.
- 32) Differentiate between upper bound & lower bound approach.

MODULE-2:

- 1) Explain in detail functions of graphics package
- 2) What is 2D transformations? Explain the procedure of translation, rotation and scaling
- 3) What is homogeneous transformation matrix
- 4) What is CAPP? Explain briefly.
- 5) Explain Retrieval CAPP with a neat sketch.
- 6) Explain Generative CAPP with a neat sketch.
- 7) Write down the advantages/Benefits of CAPP.
- 8) What is MRP? Explain briefly.
- 9) Explain the important terminology used in MRP.
- 10) Explain with a neat sketch Flow chart of MRP system.
- 11) Explain the main inputs to MRP.
- 12) Sketch the typical MRP report & explain its important uses.

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 13) What is BOM.
- 14) Explain Intended BOM with a block diagram.
- 15) List the parameters of BOM & explain Calculation of demand with an example.
- 16) What is capacity Requirements Planning, How Rated capacity is calculated?
- 17) Explain brifly Long Range Decisions.
- 18) Draw the flow chart showing the details of CRP system.
- 19) Write a note on Infinite & Finite Loading.
- 20) A work centre operates 6 days a week on a 2-shift per day basis with each shift of 8 hrs. It has 5 machines of same capacity. If machines utilized 80% of the time of a system efficiency of 95%, determine the rated capacity in standard hrs/week.

MODULE-3:

- 1) Explain the Fundamentals of Group Technology and Flexible Manufacturing Systems
- 2) Explain in detail types of FMS & FMS components
- 3) What is Automated Storage and Retrieval Systems(AS/RS), explain.
- 4) Explain the procedure of Automatic parts identification systems and data capture
- 5) Define the following with mathematical equations i) Total work content time ii) Work station process time iii) Cycle time iv) line efficiency) Precedence constrains vi) Precedence diagram vii) Balance delay
- 6) Explain the methods with different steps involved in the Assembly line balancing.
- 7) Example with an example any one method of line balancing.
- 8) Write a note on computerized line balancing.
- 9) Explain the reasons for partially automating the production line.
- 10) The table below shows precedence relations & element time for a new part, Ideal cycle time is 10 seconds. Construct the precedence diagram, using all methods, compute the balance delay & line efficiency.

Element No.	Predecessors Element	Time (sec)	Element No.	Predecessors Element	Time (sec)
1	-	5	7	6	2
2	1	3	8	7	6
3	2	4	9	6	1
4	1	3	10	6	4
5	4	6	11	10	4
6	3,5	5	12	8,9,11	7

11) Explain with mathematical expression the different terms in line balancing.

MODULE-4:

- 1) Draw the block diagram showing the basic components of NC system & explain each in detail.
- 2) Sketch& explain NC coordinate system for drilling & milling.
- 3) Sketch & explain NC coordinate system for turning.
- 4) Explain fixed zero & floating zero method.
- 5) Explain Absolute coordinate system with a sketch.
- 6) What is NC motion control systems & explain contouring system with a neat sketch.
- 7) List the different Applications of NC system.
- 8) What are the advantages & limitations of NC system?
- 9) What is CNC
- 10) What are the different functions of CNC system & explain Diagnostics in detail.
- 11) Explain vertical machining centre (VMC) with a neat sketch.
- 12) With a block diagram explain the steps involved in part programming.
- 13) What is word address format, briefly explain it.
- 14) Write down the different G & M codes with their function.
- 15) What is canned cycle explain it with an appropriate example.
- 16) Define an industrial Robot.
- 17) Sketch& explain the physical configurations of Robot.
- 18) What is degree of freedom, sketch& explain showing the degrees of freedom of robot.
- 19) Explain point to point method.

END (1) 196

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 20) Explain continuous path method.
- 21) Show the different joints in Robot.
- 22) What is degree of freedom, sketch& explain showing the degrees of freedom of robot.
- 23) Explain point to point method.
- 24) Explain continuous path method.
- 25) Show the different joints in Robot.
- 26) Explain the function to be performed by the work cell controller of an industrial robot.
- 27) Explain the basic power sources or drive system of an industrial Robot
- 28) List the important types of sensors used in robot. Explain each in detail.
- 29) Explain briefly what End effector is, sketch & explain the different types of grippers.
- 30) Explain briefly Robot programming.
- 31) List the various Robot programming methods.
- 32) Explain briefly Walkthrough method.
- 33) Write down commonly used monitor commands.
- 34) Write in brief about lead through & offline programming used in Robots.
- 35) Briefly explain General applications of an industrial robot.
- 36) List the different industrial applications of an industrial Robot & explain any 4 applications briefly

MODULE-5:

- 1) What is the Basic principles of additive manufacturing
- 2) List the advantages and limitations of AM technologies
- 3) Explain the process of Photo polymerization, material jetting
- 4) Explain the process of Powder bed sintering techniques, sheet lamination
- 5) Explain the process of binder jetting & direct energy deposition technique
- 6) What is Industry 4.0? Explain its functions.
- 7) List the applications and benefits of Industry 4.0.
- 8) Explain the Components of Industry 4.0.
- 9) What is Internet of Things (IOT),
- 10) List the IOT applications in manufacturing,
- 11) What is Big-Data and Cloud Computing for IOT,
- 12) Explain in detail the IOT for smart manufacturing,
- 13) What are the influences of IOT on predictive maintenance,
- **14)** What is industrial automation?
- 15) What is supply chain management? optimize it.
- **16)** Write a short note on supply-chain & logistics.
- 17) What is cyber-physical manufacturing systems

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.					
Course Plan					
VII SEM					
2023-24 Odd Sem					

Subject Title	TOTAL QUA	TOTAL QUALITY MANAGEMENT				
Subject Code	18ME734	18ME734 IA Marks 40				
Number of Lecture Hrs / Week	03	Exam Marks	60			
Total Number of Lecture Hrs 40 Exam Hours 03						
CREDITS - 03						

FACULTY DETAILS:			
Name: Prof. M. A. Hipparagi	Designation: Asst. Professor		Experience:15
No. of times course taught: 03	Sp	pecializati	on:Production Technology

1.0 Prerequisite Subjects:

Sl. No	Branch	Semester	Subject
1	Mechanical Engineering	V	Management & Entrepreneurship

2.0 Course Objectives

- 1. Understand various approaches to TQM
- 2. Understand the characteristics of quality leader and his role.
- 3. Develop feedback and suggestion systems for quality management.
- 4. Enhance the knowledge in Tools and Techniques of quality management

3.0 Course Outcomes

The student, after successful completion of the course, will be able to

СО	Course Outcome	Cogni tive	POs
C406.1	Explain the various approaches of TQM	L1,L2	1,5,6,11,12
C406.2	Infer the customer perception of quality	L2,L3	1,5,6,11,12
	Analyze customer needs and perceptions to design feedback systems.	L2,L3	1,5,6,11,12
C406.4	Apply statistical tools for continuous improvement of systems	L2,L3	1,5,6,11,12
C406.5	Apply the tools and technique for effective implementation of TQM.	L2,L3	1,5,6,11,12

4.0 Course Content

Module - 1

Principles and Practice: Definition, basic approach, gurus of TQM, TQM Framework, awareness, defining quality, historical review, obstacles, benefits of TQM. Quality Management Systems: Introduction, benefits of ISO registration, ISO 9000 series of standards, ISO 9001 requirements. (08 hours)

Module - 2

Leadership: Definition, characteristics of quality leaders, leadership concept, characteristics of effective people, ethics, the Deming philosophy, role of TQM leaders, implementation, core values, concepts and framework, strategic planning communication, decision making. (08 hours)

Module - 3

Customer Satisfaction and Customer Involvement: Customer Satisfaction: customer and customer perception of quality, feedback, using customer complaints, service quality, translating needs into requirements, customer retention, case studies. Employee Involvement – Motivation, employee surveys, empowerment, teams, suggestion system, recognition and reward, gain sharing, performance appraisal, unions and employee involvement, case studies. (08 hours)

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Module - 4

Continuous Process Improvement: process, the Juran trilogy, improvement strategies, types of problems, the PDSA Cycle, problem-solving methods, Kaizen, reengineering, six sigma, case studies.

Statistical Process Control: Pareto diagram, process flow diagram, cause and effect diagram, check sheets, histograms, statistical fundamentals, Control charts, state of control, out of control process, control charts for variables, control charts for attributes, scatter diagrams, case studies. (08 hours)

Module - 5

Total Productive Maintenance (TPM): Definition, Types of Maintenance, Steps in introduction of TPM in anorganization, Pillars of TPM – 5S, Jishu Hozen, Quality Maintenance, Planned Maintenance. Quality by Design (QbD): Definition, Key components of QbD, Role of QbD in Pharmaceutical Industry, Benefits and Challenges of QbD. Environmental Management Systems (EMS): Definition, Basic EMS, EMS under ISO 14001, Costs and Benefitsof EMS. (08 hours)

5.0 Relevance to future subjects/Area

SL. No	Semester	Subject	Topics / Relevance
1	8	Operations management	Problem solving skills
2	7	Human resource management	HRM Skills

6.0 Relevance to Real World

SL. No	Real World Mapping
01	Industry, Educational institutions, Public and Private sectors and Government Organizations

7.0 Books Used and Recommended to Students

Text Books

- 1.Total Quality Management: Dale.H.Bester field, Publisher- Pearson Education India, ISBN:8129702606
- 2.Total Quality management for Engineers: M. Zairi, ISBN-1855730243 Publisher- Wood head publishing

Reference Books

- 1. Managing for Quality and Performance Excellence by James R. Evans and Williuam M Lindsay, 9th edition, Publisher Cengage Learning.
- 2 A New American TQM, four revolutions in management, Shoji Shiba, Alan Graham, David Walden, Productivity press, Oregon, 1990
- 3. Organizational Excellence through TQM, H. Lal, New age Publications, 2008
- 4. Engineering Optimization Methods and Applications, A Ravindran, K,M. Ragsdell, Willey India Private Limited, 2nd Edition, 2006
- 5. Introduction to Operations Research- Concepts and Cases F.S. Hillier. G.J.LiebermanTata McGraw Hill Tata McGraw Hill

Additional Study material & e-Books

- Nptel.ac.in
- VTU, E-learning
- MOOCs

8.0

• Open course ware

Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

• http://www.nptel.ac.in

9.0 Magazines/Journals Used and Recommended to Students

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Sl.No	Magazines/Journals	website
1	International Journal for Quality Research	www.ijqr.net/journal/v4-n2/8.pdf
2	Emerald The TQM Journal information -	www.emeraldgrouppublishing.com/tqm.htm
	Emerald Group Publishing	

10.0 **Examination Note**

Internal Assessment: 40 Marks

Theoretical aspects as well as relevant sketches should be drawn neatly for questions asked in Internal Assessments

Scheme of Evaluation for Internal Assessment

Internal assessment test in the same pattern as that of the main examination (Average of three tests) 30 Marks.

Assignment Marks: 10 Total Internal Marks: 40

SCHEME OF EXAMINATION:

There are five modules two questions from each module

Student has to answer any five question choosing at least one questions from each module.

Max. Marks: 100 Marks

11.0 Course Delivery Plan

Unit	Lectur	Content of Lecture			
No.	e No.				
	1	Principles And Practices: Definition, basic approach,			
	2	Gurus of TQM,			
	3	TQM Framework, Awareness of TQM			
1	4	Defining quality, historical review,	20%		
1	5	Obstacles, benefits of TQM	(8 Hrs)		
	6	Quality Management Systems: Introduction, benefits of ISO registration			
	7	ISO 9000 series of standards,			
	8	ISO 9001 requirements.			
	9	Leadership: Definition, characteristics of quality leaders.			
	10	Leadership concept, characteristics of effective people			
	11	Ethics			
2	12	Deming philosophy, role of TQM leaders.	40%		
	13	Implementation, core values,	(8 Hrs)		
	14	concepts and frame work Strategic planning,			
	15	communication,			
	16	decision making			
	17	Customer satisfaction and employee involvement:			
		Customer Satisfaction: customer and customer perception of quality,			
	18	Feedback, using customer complaints, service quality,			
	19	Translating needs into requirements, customer retention, and case studies.	60%		
3	20	Employee Involvement: Motivation, employee surveys empowerment.	(8 Hrs)		
	21	Teams, suggestion system,	(6 1118)		
	22	recognition and reward			
	23	Gain sharing, performance appraisal			
	24	Unions and employee involvement, case studies.			
_	25	Continuous Process Improvement: process, Juran Trilogy, improvement			
		strategies			
4	26	Types of problems, PDSA cycle,	80%		
-	27	Problem solving methods, Kaizen, Reengineering, Six sigma, case studies.	(8Hrs)		
	28	Statistical Process Control: Pareto diagram, process flow diagram			
	29	cause and effect diagram, check sheets, histograms,			

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

	30	statistical fundamentals, Control charts, state of control, out of control process,			
	31	control charts for variables, control charts for attributes			
	32	32 Scatter diagrams, case studies			
	33	Total Productive Maintenance (TPM): Definition, Types of Maintenance,			
	34	Steps in introduction of TPM in an organization			
	35 Pillars of TPM – 5S, Jishu Hozen, Quality Maintenance, Planned Maintenance				
5	Quality by Design (QbD):Definition, Key components of QbD,		100%		
	37	Role of QbD in Pharmaceutical Industry	(8 Hrs)		
	38 Benefits and Challenges of QbD.				
	39 Environmental Management Systems (EMS): Definition, Basic EMS				
	40	EMS under ISO 14001, Costs and Benefitsof EMS.			

Assignments, Pop Quiz, Mini Project, Seminars 12.0

Sl.No.	Title	Outcome expected: students able to	Allied study	Week No.	Individual / Group activity	Reference: book/website /Paper
1	Assignment -1: Principles and Practice& QMS	Explain the various approaches of TQM	Module 1	2	Individual Activity.	Text Book
2	Assignment-2: Leadership	Infer the customer perception of quality	Module 2	4	Individual Activity.	Text Book
3	Assignment-3: Customer Satisfaction and Customer Involvement	Analyse customer needs and perceptions to design feedback systems.	Module 3	6	Individual Activity.	Text Book
4	Assignment-4: Continuous Process Improvement	Apply statistical tools for continuous improvement of systems	Module 4	8	Individual Activity.	Text Book
5	Assignment-5: Total Productive Maintenance, Quality by Design and Environmental Management Systems	Apply the tools and technique for effective implementation of TQM.	Module 5	10	Individual Activity.	Text Book

13.0 **Question Bank**

Sample Questions	Questions			
I	 Module 1 Explain TQM frame work with the help of neat sketch. Define quality and explain contributions of gurus of TQM List out six basic concepts of TQM and briefly explain them. List out tangible and intangible benefits of TQM. Discuss ISO 9000 and ISO 9001 Series of standards. 			
II	 Module 2 List & Explain the characteristics of Quality Leaders Briefly explain the seven steps to strategic planning. Why quality council is established? What are the duties of quality council? Explain in brief i) Vision Statement ii) Mission Statement iii) Quality Policy 			

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

	5. List out seven characteristics or habits of effective people.
	Module 3
	1. Who is a customer? What is his role in developing organization?
TIT	2. What actions organization takes to handle customer complaints?
III	3. Define the term team? Why team work?
	4. Define customer, what are the two types of customer. Explain with an example.
	5. How does employee involvement can assist in growth of an organization?
	Module 4
	1 Explain Juran Trilogy with a neat sketch.
	2 Explain the concept of quality function deployment.
IV	3 List and explain 7 tools of Quality and benefits of QFD.
1 1 1	4 Explain the process of Re-engineering, Kaizen and its benefits and applications
	5 Discuss the meaning of Six Sigma and as a tool to improve the quality and 5S Principles.
	6 Discuss the process of Bench marking and its advantages
	7 Write a short note on control charts for variables and attributes.
	Module 5
	1 What is bench marking? Explain.
V	2 Write a note on QMS and EMS
v	3 What is QFD? Explain the house of quality with neat sketch.
	4 Discuss quality by design and TPM concepts.
	5 With an example explain FMEA concept.

15.0 University Result

Year	S+,S,A (FCD)	B (FC)	C,D,E (SC)	%age of passing
August/ September 2023	28	00	00	100

Prepared by	Checked by		
Llun	Som	Osts	Sov
Prof. M A Hipparagi	Prof. M A Hipparagi	HOD	Principal
Faculty	Module coordinator		

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Subject Title	PROJECT M	PROJECT MANAGEMENT		
Subject Code	18ME745	IA Marks	40	
Number of Lecture Hrs / Week	03	Exam Marks	60	
Total Number of Lecture Hrs	40	Exam Hours	03	
CREDITS - 03				

FACULTY DETAILS:			
Name: Prof. M. A. Hipparagi	Designation: Asst. Professor		Experience:15
No. of times course taught: 01	S	pecializati	on:Production Technology

1.0 Prerequisite Subjects:

Sl. No	Branch	Semester	Subject
1	Mechanical Engineering	V	Management & Entrepreneurship

2.0 Course Objectives

- To understand how to break down a complex project into manageable segments and use of effective project management tools and techniques to arrive at solution and ensure that the project meets its deliverables and is completed within budget and on schedule.
- To impart knowledge on various components, phases, and attributes of a project.
- To prepare students to plan, develop, lead, manage, and successfully implement and deliver projects within their chosen practice area

3.0 Course Outcomes

The student, after successful completion of the course, will be able to

СО	Course Outcome	Cogni tive	POs
	Understand the selection, prioritization and initiation of individual projects and strategic role of project management.	L1,L2	1,5,6,11,12
C412.2	Understand the work breakdown structure by integrating it with organization.	L2,L3	1,5,6,11,12
C412.3	Understand the scheduling and uncertainty in projects.	L2,L3	1,5,6,11,12
C412.4	Understand risk management planning using project quality tools.	L2,L3	1,5,6,11,12
C412.5	Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects.	L2,L3	1,5,6,11,12

4.0 Course Content

Module - 1

Introduction: Definition of project, characteristics of projects, understand projects, types of projects, scalability of project tools, project roles Project Selection and Prioritization – Strategic planning process, Strategic analysis, strategic objectives, portfolio alignment – identifying potential projects, methods of selecting projects, financial mode / scoring models to select projects, prioritizing projects, securing and negotiating projects. (08 hours)

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Module - 2

Planning Projects: Defining the project scope, Project scope checklist, Project priorities, Work Breakdown Structure (WBS), Integrating WBS with organisation, coding the WBS for the information system. Scheduling Projects: Purpose of a project schedule, historical development, how project schedules are limited and

created, develop project schedules, uncertainty in project schedules, Gantt chart. (08 hours)

Module - 3

Resourcing Projects: Abilities needed when resourcing projects, estimate resource needs, creating staffing management plant, project team composition issues, Budgeting Projects: Cost planning, cost estimating, cost budgeting, establishing cost control. Project Risk Planning: Risk Management Planning, risk identification, risk analysis, risk response planning, Project Quality Planning and Project Kick off: Development of quality concepts, project quality management plan, project quality tools, kick off project, baseline and communicate project management plan, using Microsoft Project for project baselines.. (08 hours)

Module - 4

Performing Projects: Project supply chain management: - Plan purchasing and acquisitions, plan contracting, contact types, project partnering and collaborations, project supply chain management. 28 Project Progress and Results: Project Balanced Scorecard Approach, Internal project, customer, financial issues, Finishing the project: Terminate project early, finish projects on time, secure customer feedback and approval, knowledge

management, perform administrative and contract closure.. (08 hours)

Module - 5

Network Analysis: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method (CPM) to find the expected completion time of a project, floats; PERTfor finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.. (08 hours)

5.0 Relevance to future subjects/Area

SL. No	Semester	Subject	Topics / Relevance
1	8	Operations management	Problem solving skills
2	7	Human resource management	HRM Skills

6.0 Relevance to Real World

SL. No	Real World Mapping
01	Industry, Educational institutions, Public and Private sectors and Government Organizations

7.0 Books Used and Recommended to Students

Text	t Books	
1.	ProjectManagement by TimothyJ Kloppenborg, CengageLearning, Edition2009	TimothyJ
2.	ProjectManagement-Asystemsapproachtoplanningscheduling and controlling by Harold Kerzner, CBSpublication	Kloppenborg
Refe	erence Books	

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 1. ProjectManagement by Pennington Lawrence, McGrawHill.
- 2. ProjectManagement by AModerJosephand PhillipsNewYark, VanNostrandReinhold.
- 3. ProjectManagement by BhaveshM.Patal, VikaspublishingHouse

Additional Study material & e-Books

- Nptel.ac.in
- VTU, E-learning
- MOOCs
- Open course ware

8.0

9.0

Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

• http://www.nptel.ac.in

Magazines/Journals Used and Recommended to Students

Sl.No	Magazines/Journals	website
1	International Journal for Project Management	www.ijqr.net/journal/v4-n2/8.pdf
2	Emerald The Project Management Journal	www.emeraldgrouppublishing.com/pm.htm
	information - Emerald Group Publishing	

10.0 Examination Note

Internal Assessment: 40 Marks

Theoretical aspects as well as relevant sketches should be drawn neatly for questions asked in Internal Assessments

Scheme of Evaluation for Internal Assessment

Internal assessment test in the same pattern as that of the main examination (Average of three tests) 30 Marks.

Assignment Marks: 10 Total Internal Marks: 40

SCHEME OF EXAMINATION:

There are five modules two questions from each module

Student has to answer any five question choosing at least one questions from each module.

Max. Marks: 100 Marks

11.0 Course Delivery Plan

Unit No.	Lectur e No.	Content of Lecture	% of Portion
110.	e No.		rortion
	1	Introduction: Definition of project, characteristics of projects, understand	
		projects, types of projects,	
	2	Scalability of project tools, project roles Project Selection and Prioritization	
	3	Strategic planning process	20%
1	4	Strategic analysis	(8 Hrs)
	5	Strategic objectives, portfolio alignment	(6 1118)
	6	Identifying potential projects	
	7	Methods of selecting projects	
	8	Securing andnegotiating projects.	
	9	Planning Projects: Defining the project scope, Project scope checklist, Project	400/
2		priorities	40% (8 Hrs)
	10	Work Breakdown Structure(WBS)	(0 1118)

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

	11	Scheduling Projects	
	12	Scheduling Projects	
	13	Purposeofaprojectschedule	
	14	Historicaldevelopment	
	15	Developprojectschedules	
	16	Ganttchart.	
	17	Resourcing Projects: Abilities needed when resourcing projects, estimate	
		resource needs	
	18	Projectteamcompositionissues	
	19	BudgetingProjects	60%
3	20	ProjectRiskPlanning	(8 Hrs)
	21	Development of quality concepts	(6 1113)
	22	Projectqualitytools,kickoffproject	
	23	Baselineand communicateproject management plan	
	24	Microsoft Project for project baselines.	
	25	Performing Projects:Projectsupplychainmanagement	
	26	Projectpartneringand collaborations	
	27	28Project Progress andResults	
4	28	ProjectBalancedScorecard Approach	80%
*	29	Finishingthe project	(8Hrs)
	30	Finishingthe project	
	31	Securecustomerfeedbackandapproval	
	32	Perform administrative and contract closure	
	33	Network Analysis:Introduction, network construction - rules	
	34	Fulkerson's rule for numbering the events	
	35	AONandAOAdiagrams	
5	36	Critical path method (CPM) to find the expected completion time of a project, floats	100%
	37	Determining the probability of completing a project	(8 Hrs)
	38	Predicting the completion time of project	
	39	Crashing of simple projects	
	40	Crashing of simple projects	

12.0 Assignments, Pop Quiz, Mini Project, Seminars

Sl.No.	Title	Outcome expected: students able to	Allied study	Week No.	Individual / Group activity	Reference: book/website /Paper
1	Assignment -1: Introduction	Explain the various approaches of PM	Module 1	2	Individual Activity.	Text Book
2	Assignment-2: Planning Projects	Infer the objectives of project planning.	Module 2	4	Individual Activity.	Text Book
3	Assignment-3: Resourcing Projects	Analysethe different resources to accomplish the projects	Module 3	6	Individual Activity.	Text Book
4	Assignment-4: Performing Projects	Apply statistical tools for performing projects,	Module 4	8	Individual Activity.	Text Book

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

5 Assignment-5: Network Analysis	Apply the tools and technique for effective completion of projects.	Module 5	10	Individual Activity.	Text Book
----------------------------------	---	----------	----	----------------------	-----------

13.0 **Question Bank**

Sample Questions	Questions			
Questions	Module 1			
VI	le 1 at is a project? What is project management? How are projects different from on-going perations? at types of constraints are common to most projects? at are the three components of the Talent Triangle? what stage of a project life cycle are the majority of the hands-on tasks completed? ring which stage of the project life cycle are loose ends tied up? at are the five process groups of project management? ich process group defines a new project or phase by obtaining authorization? at are the 10 project management knowledge areas? at two project dimensions are components of project performance? low do you define project success? low do you define project failure? ist four common causes of project failure. What are three common ways of classifying projects? What is predictive or plan-driven planning, and when should it be used? What is adaptive or change-driven planning, and when should it be used? What makes someone a project stakeholder? What are the three project executive-level roles? ist and describe each of the managerial and associate project roles.			
	Module 2			
VII	 Define WBS. Explain the different formats for constructing WBS, with a suitable example. With a suitable example, explain the steps involved in defining project scope. Write a short note on Program Evaluation and Review Technique (PERT) Define project scheduling. What is the purpose of project schedule? Discuss the historical development. What is Gantt Chart? Discuss how it is used in Project Management. Write a short note on Monte Carlo Simulation. 			
	Module 3			
VIII	 Discuss the Project team composition issued to be considered when selecting team members. Explain the ability needed to correctly resource a project by a Project Manager. What is Project Budget? Why you need a Project Budget. With a flow chart, explain DMAIC process for achieving quality improvement. Explain the basic quality tools for efficient Project Management. Explain Roles and Responsibilities Project Risk Planning 			
	Module 4			
IX	 8 .What do you mean by Balanced Scorecard Approach to project determination. 9 Expalin the common reasons for terminating the project early. 10 Briefly explain the post project activities of the project management. 11 Define Supply Chain Management. Explain the four areas involving in supply chain project management(SCPM) 12 What do you mean by knowledge management? Define partering and stratargicpartering. 			

X

S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

Mo	du	le	5
----	----	----	---

1. Explain the error which would like to occur during drawing of network diagram.

2. The following table shows the jobs of a network with their estimates.

		0							
Job	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
to	3	2	6	2	5	3	3	1	4
tm	6	5	12	5	11	6	9	4	19
tp	15	14	30	8	17	15	27	7	28

- i) Draw the network.
- ii) Calculate length and variance of critical path.
- iii) What is the approximate probability the jobs on critical path will be completed in a days?
- 4. Write a short note on AoA and AoN diagrams.
- 5. Assuming that expected times are normally distributed. Find the probability of meetingthescheduld date as given by following table. Also find the date on which project processing can complete the project with probability of 0.9.

Job	1-2	1-3	2-4	3-4	4-5	3-5
t _o	2	9	5	2	6	8
t _m	5	12	14	5	6	17
t _p	14	15	17	8	12	20

1. Schedule project completion date is 30 days

15.0 University Result

Year	S+,S,A (FCD)	B (FC)	C,D,E (SC)	%age of passing

Prepared by	Checked by	0	
Llur	Llur	Ostx	Sex
Prof. M A Hipparagi	Prof. M A Hipparagi	HOD	Principal
Faculty	Module coordinator		

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

Subject Title COMMUNICATION THEORY				
Subject Code	18EC751	CIE Marks	40	
Number of Lecture Hrs/ Week	03	Exam Marks	60	
Total Number of Lecture Hrs	40	Exam Hours	03	
CREDITS - 03				
FACULTY DETAILS:				
Name: Prof. B. P. Khot	Designation: Associate I	Professor Experience:7.8	Yrs	
No. of times course taught: 01 Specialization: Microelectronics and control systems				

1.0 Prerequisite Subjects:

Sl. N	Branch	Semester	Subject
01	Common to all	I/II	Basic Electronics

2.0 Course Objectives

This course will enable students to:

- 1. Describe essential elements of an electronic communications. Understand Amplitude, Frequency & Phase modulations, and Amplitude demodulation.
- 2. Explain the basics of sampling and quantization.
- 3. Understand the various digital modulation schemes.
- 4. Understand the concepts of wireless communication.

3.0 Course Outcomes

At the end of the course students will be able to:

	Course Outcome	RBT Level	POs
C405.1	Describe operation of communication systems.	L1, L2	PO1,PO2, PO5, PO6, PO7, PO8, PO9, PO11, PO12
C405.2	Understand the techniques of Amplitude and Angle modulation.		PO1,PO2, PO5, PO6, PO7, PO8, PO9, PO11, PO12
C405.3	Understand the concept of sampling and quantization.	L1, L2	PO1,PO2, PO5, PO6, PO7, PO8, PO9, PO11, PO12
C405.4	Understand the concepts of different digital modulation techniques.	L1, L2	PO1,PO2, PO5, PO6, PO7, PO8, PO9, PO11, PO12
C405.5	Describe the principles of wireless communications system.	L1, L2	PO1,PO2, PO5, PO6, PO7, PO8, PO9, PO11, PO12
	Total Hours of instruction		40

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

4.0 Course Content

Module-1	RBT Level
Introduction to Electronic Communications:	
Historical perspective, Electromagnetic frequency spectrum, signal and its representation, Elements of electronic	L1, L2
communications system, primary communication resources, signal transmission concepts, Analog and digital	L1, L2
transmission, Modulation, Concept of frequency translation, Signal radiation and propagation (Text 1: 1.1 to1.10)	
Module-2	
Noise: Classification and source of noise (TEXT 1:3.1)	
Amplitude Modulation Techniques:	
Types of analog modulation, Principle of amplitude modulation, AM power distribution, Limitations of AM, (TEXT	
1: 4.1,4.2, 4.4, 4.6)	
Angle Modulation Techniques:	L1, L2
Principles of Angle modulation, Theory of FM-basic Concepts, Theory of phase modulation (TEXT 1:5.1,5.2, 5.5)	
Analog Transmission and Reception:	
AM Radio transmitters, AM Radio Receivers (TEXT 1:6.1,6.2) Ll, L2	
Module-3	
Sampling Theorem and pulse Modulation Techniques:	
Digital Versus analog Transmissions, Sampling Theorem, Classification of pulse modulation techniques, PAM,	L1, L2
PWM, PPM, PCM, Quantization of signals (TEXT1:7.1 to7.8)	D1, D2
Module-4	1
Digital Modulation Techniques:	
Types of digital Modulation, ASK,FSK,PSK,QPSK (TEXT 1:9.1 to 9.S)	
Source and Channel Coding:	L1, L2
Objective of source coding, source coding technique, Shannon's source coding theorem, need of channel coding,	,
Channel coding theorem, error control and coding (TEXT 1:11.1to 11.3, 11.8, 11.9,11.12)	
Module-5	
Evolution of wireless communication systems:	
Brief History of wireless communications, Advantages of wireless communication, disadvantages of wireless	
communications, wireless network generations, Comparison of wireless systems, Evolution of next-generation	
networks, Applications of wireless communication (TEXT 2: 1.1to 1.7)	L1, L2
Principles of Cellular Communications:	
Cellular terminology, Cell structure and Cluster, Frequency reuse concept, Cluster size and system capacity, Method	
of locating cochannel cells, Frequency reuse distance (TEXT 2: 4.1 to 4.7)	

5.0 Relevance to future subjects

Sl. No	Semester	Subject	Topics
01	VIII	Project work	Communication based projects.
02	M.Tech Mechatronics	Automotive Electronics	Comparison between analogue and digital control, Proportional attributes, Ramp, Gain, dead band, Dither, Pulse width modulation and Integrated electronics option frequency Response
03	M.Tech Computer Network	Computer Network Engineering	Wireless Ad hoc Networks, Wireless network measures, mobile device security, security threats, mobile device security strategy, IEEE 802.11 Wireless LAN overview

6.0 Relevance to Real World

SL. No	Real World Mapping
01	Understanding the Concepts such as modulation and frequency translation are directly applicable in the
01	design and operation of communication devices and networks.
02	Noise is a ubiquitous challenge in electronic communication systems. Knowledge of noise classification and

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

Course Plan

VII SEM

2023-24 Odd Sem

	sources is essential for engineers working on minimizing interference and improving signal quality in real-
	world communication scenarios.
	Digital modulation techniques like ASK, FSK, PSK, and QPSK are fundamental in digital communication
03	systems. They find applications in wireless data transmission, satellite communication, and modern digital
	broadcasting

7.0 Gap Analysis and Mitigation

SL. No	Delivery Type	Details
01	NPTEL Video	The transition from digital modulation to the evolution of wireless communication
	Lecture	systems is not clearly explained in the provided s

8.0 Books Used and Recommended to Students

Text Books

- 1. Analog and Digital Communications by T L Singal, McGraw Hill Education (India) Private Limited.
- 2. Wireless Communications by TL Singal, McGraw Hill Education (India) Private Limited.

Reference Books

- 1. Modern Digital and Analog Communication Systems B. P. Lathi, Oxford University Press., 4th ed, 2010.
- 2. Communication Systems: Analog and Digital, RP.Singh and S.Sapre: TMH 2nd edition, 2007
- 3. Introduction to Wireless Telecommunications systems and Networks by Gray J Mullett, Cengage learning.

9.0

Relevant Websites (Reputed Universities and Others) for Notes /Animation / Videos Recommended

Website and Internet Contents References

- 1. Amplitude Modulation: NPTEL Video Lecture https://youtu.be/UznnkHMisIk
- 2. Frequency Modulation: NPTEL Video Lecture https://youtu.be/qY_yg2igDjg
- 3. Sampling Theorem: NPTEL Video Lecture https://youtu.be/G5p0v1BJ0l8

10.0 Magazines/Journals Used and Recommended to Students

Sl.No	Magazines/ Journals	Website
1	IEEE	Communication theory, past, present and prospective
		https://ieeexplore.ieee.org/abstract/document/1188571

11.0 Examination Note

SCHEME OF EVALUATION FOR INTERNAL ASSESSMENT (40 Marks)

- Total three Internal Assessment test will be conducted for 50 marks then Internal Assessment test Average
 of all three Tests will be taken for 30 marks
- Assignment: 10 Marks.

SCHEME OF EXAMINATION:

- The question paper will have ten questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module.

12.0 Course Delivery Plan

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

Module	Lecture No.	Content of Lecturer	% of Portion
	1	Historical perspective,	
	2	Electromagnetic frequency spectrum,	
Module- 1	3	signal and its representation,	
Introduction to	4	Elements of electronic communications system	20
Electronic	5	primary communication resources	20
Communications	6	signal transmission concepts	
	7	Analog and digital transmission, Modulation	1
	8	Concept of frequency translation, Signal radiation and propagation	1
	9	Noise: Classification and source of noise	
	10	Amplitude Modulation Techniques: Types of analog modulation,	
	11	Principle of amplitude modulation, AM power distribution, Limitations of AM,	1
Module- 2 Noise and	12	Angle Modulation Techniques: Principles of Angle modulation	20
modulation	13	Theory of FM-basic Concepts	20
Technique	14	Theory of phase modulation	1
		Analog Transmission and Reception:	-
	15	AM Radio transmitters,	
	16	AM Radio Receivers	
	17	Digital Versus analog Transmissions	
Module -3	18	Sampling Theorem,	
Sampling	19	Classification of pulse modulation techniques	
Theorem and pulse	20	PAM	20
Modulation	21	PWM	
Techniques	22	PPM	
	23	PCM	
	24	Quantization of signals	
	25	Digital Modulation Techniques: Types of digital Modulation	
	26	ASK,FSK,PSK,QPSK	
Module -4	27	Source and Channel Coding: Objective of source coding,	
Digital	28	Source coding technique	20
Modulation Techniques	29	Shannon's source coding theorem,	
,	30	Need of channel coding,	-
	31	Channel coding theorem	
	32	Error control and coding	_
	33	Evolution of wireless communication systems: Brief History of wireless communications, Advantages of wireless communication,	
Module 5: Evolution of	34	disadvantages of wireless communications, wireless network generations,	1
	35	Comparison of wireless systems, Evolution of next-generation networks,	20
wireless communication	36	Applications of wireless communication Principles of Cellular Communications: Cellular terminology,	- 20
systems	37	Cell structure and Cluster, Frequency reuse concept,	1
	J 1		

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

38	Cluster size and system capacity,	
39	Method of locating cochannel cells,	
40	Frequency reuse distance	

13.0

QUESTION BANK

Module-1: Introduction to Electronic Communications (Text 1: 1.1 to 1.10)

- 1. What is the historical perspective of electronic communications, and how has it evolved over time?
- 2. Explain the elements of electronic communications systems and their significance in signal transmission.
- 3. Differentiate between analog and digital transmission, highlighting their respective concepts.
- 4. Define modulation and discuss its role in electronic communications.
- 5. Explore the concept of frequency translation and its importance in signal radiation and propagation.
- 6. How do AM radio transmitters function, and what are the key components involved?
- 7. Provide an overview of AM radio receivers, emphasizing their operation and features.
- 8. What are the primary communication resources, and how are they utilized in electronic communications?
- 9. Discuss the limitations of AM and the distribution of AM power.
- 10. Explain the concepts of electromagnetic frequency spectrum and signal representation.

Module-2: Noise and Amplitude Modulation Techniques (Text 1: 3.1, 4.1, 4.2, 4.4, 4.6)

- 1. Classify and explain the sources of noise in electronic communication systems.
- 2. Outline the types of analog modulation and elaborate on the principles of amplitude modulation (AM).
- 3. Discuss the AM power distribution and its significance in communication systems.
- 4. Explore the theory of amplitude modulation and its fundamental concepts.
- 5. What are the limitations associated with amplitude modulation (AM)?
- 6. Define angle modulation techniques and their role in electronic communications.
- 7. Explain the principles of frequency modulation (FM) and phase modulation (PM).
- 8. Compare and contrast amplitude modulation (AM) and frequency modulation (FM).
- 9. How does noise impact communication systems, and what are the challenges associated with noise?
- 10. Discuss the practical applications of amplitude modulation techniques.

Module-3: Sampling Theorem and Pulse Modulation Techniques (Text 1: 7.1 to 7.8)

- 1. Define digital versus analog transmissions and discuss their differences.
- 2. Explain the sampling theorem and its significance in signal processing.
- 3. Classify pulse modulation techniques and provide an overview of each (PAM, PWM, PPM, and PCM).
- 4. Describe the process of quantization of signals and its role in pulse modulation.
- 5. How does the sampling theorem contribute to the accuracy of digital signal representation?
- 6. Discuss the applications and advantages of pulse amplitude modulation (PAM).
- 7. Elaborate on the principles and applications of pulse width modulation (PWM).
- 8. Explain the concept of pulse position modulation (PPM) and its use in communication.
- 9. What is pulse code modulation (PCM), and how does it differ from other pulse modulation techniques?
- 10. Analyze the implications of quantization in digital signal processing.

Module-4: Digital Modulation Techniques (Text 1: 9.1 to 9.5)

- 1. Provide an overview of digital modulation techniques and their significance.
- 2. Differentiate between various types of digital modulation, including ASK, FSK, PSK, and QPSK.
- 3. Explain the principles and applications of Amplitude Shift Keying (ASK) in digital communication.
- 4. Discuss the characteristics and applications of Frequency Shift Keying (FSK).
- 5. Elaborate on the concepts and advantages of Phase Shift Keying (PSK) in digital communication.
- 6. Compare and contrast Quadrature Phase Shift Keying (QPSK) with other digital modulation techniques.
- 7. How do digital modulation techniques contribute to efficient signal transmission?
- 8. Discuss the applications and limitations of ASK in real-world scenarios.
- 9. Explain the role of FSK in modern communication systems.
- 10. Provide examples of practical applications of PSK in digital communication.

Module-5: Evolution of Wireless Communication Systems (Text 2: 1.1 to 1.7)

- 1. Briefly describe the historical evolution of wireless communication systems.
- 2. What are the advantages and disadvantages of wireless communication systems?

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

- 3. Provide an overview of the different generations of wireless networks.
- 4. Compare and contrast various wireless communication systems.
- 5. How has wireless communication evolved to next-generation networks?
- 6. Discuss the applications of wireless communication in contemporary scenarios.
- 7. Explain the principles of cellular communications and its significance in wireless networks.
- 8. Define cellular terminology and discuss its role in wireless communication.
- 9. Explore the concept of frequency reuse and its implications in cellular networks.
- 10. Discuss the methods used for locating co-channel cells in cellular communication.

13.0 **University Result**

Examination	FCD	FC	SC	% Passing
Subject Taken for the First time				

(20	March 1	£
Agia	Miller	- TOK
S. Ittannavar	HOD	Principal
	S. Ittannavar	S. Ittannavar HOD

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

Subject Title	CIM Lab		
Subject Code	18MEL76	IA Marks	40
No of Practical Hrs/ Week	01+02	Exam Marks	60
Total No of Practical Hrs	42	Exam Hours	03
	•	CREDITS – 02	•

FACULTY DETAILS:		
Name: Prof. M S Futane	Designation: Asst.Professor	Experience: 18Years
No. of times course taught: 10Times	Speciali	zation: CIM

1.0 Prerequisite Subjects:

Sl. No	Branch	Semester	Subject
01	Mechanical Engineering	I/II	CAED
02	Mechanical Engineering	III/IV	CAMD
03	Mechanical Engineering	V/VI	CAMA

2.0 Course Objectives

- To explain the functions and operations of CNC Machines.
- Construct numerical control(NC) part program.
- Construct computer numerical control (CNC) part program.
- Describe the preparatory commands such as G Codes, M Codes, T Codes etc.
- To write manual part program for turning drilling, milling machines and simulate the same.
- Explain robot programming language for simple operations such as pick and place, stacking objects using teach
 pendent and off line programming.
- Use the knowledge of pneumatics and hydraulics to demonstrate the related experiments.

3.0 Course Outcomes

The student, after successful completion of the course, will be able to

СО	Course Outcome		POs
CO408. 1	Appreciate NC & CNC machines & its practical use in industry.		1,2,3,4,5,6,8,9,10,12
CO408. 2	Distinguish between absolute & incremental coordinate system.	A	1,2,3,4,5,6,8,9,10,12
	Make use of computer assisted part programming software to perform milling, drilling and turning operations in design, simulation and manufacturing.		1,2,3,4,5,6,8,9,10,12
CO408. 4 Write manual part programs for milling, turning operations.		A	1,2,3,4,5,6,8,9,10,12
CO408. 5	CO408. 5 Explain what is FMS & ASRS		1,2,3,4,5,6,8,9,10,12
CO408. 6	Develop the robot program by using basic commands.	A	1,2,3,4,5,6,8,9,10,12
CO408. 7	D408. 7 Read and explain Electro Hydraulics & Pneumatic circuits.		1,2,3,4,5,6,8,9,10,12
Total Hours of instruction			42

SJPN Trust's

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

4.0 Course Content

PART - A

Manual CNC part programming

using ISO Format G/M codes for 2 turning and 2 milling parts. Selection and assignment of tools, correction of syntax and logical errors, and verification of tool path using CNC program verification software.

PART - B

CNC part programming using CAM packages.

Simulation of Turning, Drilling, Milling operations. 3 typical simulations to be carried out using simulation packages like: Cadem CAM Lab-Pro, MasterCAM. Program generation using software. Optimize spindle power, torque utilization, and cycle time. Generation and printing of shop documents like process and cycle time sheets, tool list, and tool layouts. Cut the part in single block and auto mode and measure the virtual part on screen. Post processing of CNC programs for standard CNC control systems like FANUC, SINUMERIC and MISTUBISHI.

PART - C

(Only for Demo/Viva voce)

FMS (Flexible Manufacturing System): Programming of Automatic storage and Retrieval system (ASRS) and linear shuttle conveyor Interfacing CNC lathe, milling with loading unloading arm and ASRS to be carried out on simple components. Robot programming: Using Teach Pendent & Offline programming to perform pick and place, stacking of objects (2 programs). Pneumatics and Hydraulics, Electro-Pneumatics: 3 typical experiments on Basics of these topics to be conducted.

Relevance to future subjects

SL. No	Semester	Subject		Topics / Relevance
01	VI	Computer	Integrated	Provides basics of machine tools & Programming
		Manufacturing	-	
02	VIII	Project work		Generation of components for project

6.0 Relevance to Real World

SL.No	Real World Mapping
01	Automobile Industries
02	Designing & simulation purpose

7.0 Books Used and Recommended to Students

Text Books

1. Computer Integrated Manufacturing, J A Rehj and Henry W Krauber

Reference Books

- 2. Fundamental Concepts and Analysus, Ghosal A. Robotics Oxford 2006.
- 3. Computer Integrated Manufacturing, J A Rehj and Henry W Krauber
- CAD/CAM by Zeid TMH.

Additional Study material & e-Books

A Textbook of CIM & automation eBook By M P Grover PDF.

Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 1. https://en.wikipedia.org/wiki/Machine shop
- 2. http://www.nptel.ac.in

9.0 Magazines/Journals Used and Recommended to Students

Sl.No	Magazines/Journals	website
1	International Journal of Computer Integrated Manufacturing	www.tandfonline.com/toc/tcim20/current
2	Robotics and Computer-Integrated Manufacturing - Journal	https://www.journals.elsevier.com/robotics-and-computer-integrated-manufacturing
3	Robotics and Computer-Integrated Manufacturing - ScienceDirect.com	www.sciencedirect.com/science/journal/07365845

Examination Note

Internal Assessment:

Theoretical aspects as well as relevant sketches should be drawn neatly for questions asked in Internal Assessments Scheme of Evaluation for Internal Assessment (20 Marks)

(a) Internal Assessment test in the same pattern as that of the main examination 20marks.

SCHEME OF EXAMINATION: (80 Marks)

One question is to be set from Part-A 40Marks, One question is to be set from either Part-B 20Marks Viva–Voce 20Marks

11.0 Course Delivery Plan

Unit No.	Experiment	Content of Lecturer	
	No.	0	Portion
	1	Introduction to CIM using Edge Cam Software	
	2	Introduction to different preparatory commands ie. G Codes, M Codes etc.	7.14
	3	Preparation of the turning job on computer and its simulation.	7.14
PART A	4	Preparation of drilling job on computer and its simulation.	7.14
	5	Preparation of Milling Job on a Computer and its simulation.	7.14
	6	Selection and assignment of tools	7.14
	7	correction of syntax and logical errors	7.14
	8	Introduction to write a NC part program for turning.	7.14
PART B	9	Introduction to write a NC part program for drilling.	7.14
	10	Introduction to write a NC part program for milling.	
	11	Demonstration of Flexible Manufacturing System(FMS) of Automatic Storage and Retrieval System(ASRS) and Linear Shuttle Conveyor Interfacing CNC Lathe, Milling, Loading, Unloading Arm and ASRS to be carried out on simple components.	7.14
PART C	12	Demonstration-Introduction to Robot Programming Language Using Teach Pendent and Offline Programming to perform pick and place, stacking of objects.	7.14
	13	Demonstration on pneumatics and hydraulics, electro pneumatics at least 3 circuit diagrams.	7.14

12.0 QUESTION BANK

- 1. Define computer integrated manufacturing and what are its applications.
- 2. Define automation and types of automation.
- 3. What is flexible manufacturing system (FMS)?
- 4. What is ASRS in FMS?

END (I) 1996

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

- 5. Define numerical control and what are the basic components of numerical control.
- 6. What is the NC coordinate system for drilling and milling?
- 7. What is the NC coordinate system for turning.
- 8. What are three basic types of motion control systems in numerical control?
- 9. Define CNC and need for CNC.
- 10. What are the advantages and disadvantages of CNC System?
- 11. What are the different CNC machining centers?
- 12. What is machine control unit and list the sub systems of MCU.
- 13. What is CNC part programming? And explain manual part programming and computer assisted part programming briefly.
- 14. What are the important involved in the development of a part program.
- 15. List the different NC words to prepare a block in NC programming.
- 16. What are the different NC data formats?
- 17. List different preparatory codes and their meaning.
- 18. What are the standard formats to write a manual part program.
- 19. What are the different steps in computer assisted part programming?
- 20. List the different NC part programming languages.
- 21. What is an industrial robot and what are basic components of it.
- 22. What are the basic robots motions?
- 23. List the technical features of robots.
- 24. What is meant by grippers and effectors in robot?
- 25. List the robot censors.
- 26. What are the steps involved in robot programming.
- 27. What are the different robot applications?
- 28. What is hydraulics and pneumatics and electro pneumatics draw at least one circuit diagram to explain it.

- Office	0.48	Sor
Course coordinator	HOD	Principal

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.	
Course Plan	
VII SEM	
2023-24 Odd Sem	

Course Title	DESIGN LA	В	
Course Code	18MEL77	CIE Marks	40
Practical Hrs/ Week (L:T:P)	0:2:2	SEE Marks	60
Practical Hrs	03	Exam Hours	03
			Credits: 02

FACULTY DETAILS:		
Name: Prof. S.A. Goudadi	Designation: Asst. Professor	Experience:16 Years
No. of times course taught: 3 Time		Specialization: Design Engg

1.0 Prerequisite Subjects:

Sl. No	Branch	Semester	Subject
01	Mechanical Engineering	III	Mechanics of Materials
02	Mechanical Engineering	V	Dynamics of Machines
03	Mechanical Engineering	VII	Mechanical vibrations

2.0 Course Learning Objectives:

- To understand the concepts of natural frequency, logarithmic decrement, damping and damping ratio.
- To understand the techniques of balancing of rotating masses and influence of gyroscopic couple.
- To verify the concept of the critical speed of a rotating shaft.
- To illustrate the concept of stress concentration using Photo elasticity.
- To appreciate the equilibrium speed, sensitiveness, power and effort of a Governor.
- To illustrate the principles of pressure development in an oil film of a hydrodynamic journal bearing.
- To visualize different mechanisms and cam motions

3.0 Course Outcomes

After successful completion of the course, the student will be able to;

СО	Course Outcome	Cognitive Level	POs
C418.1	Compute the natural frequency of the free and forced vibration of single degree freedom systems, criticalspeed of shafts.	L3	1,2,6,8,12
C418.2	Carry out balancing of rotating masses.	L3	1,2,6,8,12
C418.3	Analyse the governor characteristics.	L3	1,2,6,8,12
C418.4	Determine stresses in disk, beams, plates and hook using photo elastic bench	L3	1,2,6,8,12
C418.5	Determination of Pressure distribution in Journal bearing	L3	1,2,6,8,12
C418.6	Analyze the stress and strains using strain gauges in compression and bending test and stress distribution in curved beams.	L3	1,2,6,8,12

Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

Course Content

S. N.	Experiments		
	PART - A		
1	Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a single degree of freedom vibrating systems (longitudinal and torsional).		
2	Balancing of rotating masses		
3	Determination of critical speed of a rotating shaft		
4	Determination of equilibrium speed, sensitiveness, power and effort of Porter/Proell /Hartnel Governor.		
	PART - B		
5	Determination of Fringe constant of Photo-elastic material using.a) Circular disc subjected to diametral compression.b) Pure bending specimen (four-point bending.		
6	Determination of stress concentration using Photo-elasticity for simple components like plate with a hole under tension or bending, circular disk with circular hole under compression, 2D Crane hook		
7	7 Determination of Pressure distribution in Journal bearing		
8	Determination of Principal Stresses and strains in a member subjected to combined loading using Strain		
9	rosettes. Determination of stresses in Curved beam using strain gauge.		

5.0 Relevance to future subjects

SL. No	Semester	Subject	Topics / Relevance
1	VIII	Project work	Analysis of vibration of machine parts, Performance of
			Journal bearings

Relevance to Real World

SL.No	Real World Mapping	
01	As a field of study it is very important for analyzing systems consisting of single	
	bodies or multiple bodies interacting with each other.	
02	A dynamics analysis is what allows one to predict the motion of an object or objects,	
	under the influence of different forces, such as gravity or a spring.	

7.0 **Books Used and Recommended to Students**

Reference Books

- Theory of machines By S.S.Rattan
- Mechanical Vibrations By V.P.singh

Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.
Course Plan
VII SEM
2023-24 Odd Sem

8.0

Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

- 3. http://nptel.ac.in
- 4. www.vturesource.com
- 5. http://www.sapnaonline.com
- 6. Anmited video on Governer: https://www.youtube.com/watch?v=HS_YGZXP2xY
- 7. Video on proell governer: https://www.youtube.com/watch?v=qD8R-NtC8bo
- 8. Video on Gyroscope: https://www.youtube.com/watch?v=NeXIV-wMVUk
- 9. Video on Journal bearing:https://www.youtube.com/watch?v=xhtq8xqBXwE
- 10. Video on Critical speed of shaft: https://www.youtube.com/watch?v=ZEawe4jCbFw
- 11. Balancing of Rotating Masses:
 https://www.youtube.com/watch?v=0MeAZFFqmek&list=PLdLe0dTcWW-udCcNGoAK8fx2PiS5gkVu
- 12. Static and dynamic balancing by Tecquipment: https://www.youtube.com/watch?v=p1JDMvWGdsk
- 13. Forced vibrations by Tecquipment: https://www.youtube.com/watch?v=r_ouYEYhR5U
- 14. Video on Free Vibration: https://www.youtube.com/watch?v=RYKJo2iAz74

Magazines/Journals Used and Recommended to Students

Sl. No	Magazines/Journals	website	
1	Mechanism and Machine Theory	https://www.journals.elsevier.com	
2	International Journal of Mechanical and	http://www.springer.com	
	Materials Engineering (IJMME)	nttp.//www.springer.com	
3	Multi body System Dynamics	http://www.springer.com	
4	Journal of Dynamic Systems, Measurement,	http://dynamicsystems.asmedigitalcollection.a	
4	and Control	sme.org/article.aspx?articleid=1403252	

10.0

9.0

Examination Note

Scheme of Examination:

One question from Part A: 40 marks One question from Part B: 40 Marks

Viva voce: 20 Marks Total: 100 Marks

S J P N Trust's Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. **Course Plan** VII SEM 2023-24 Odd Sem

Course Delivery Plan

Expt No	Lecture/ Practical No	Name of the Experiment	% of Portion
1	1	Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a single degree of freedom vibrating systems (longitudinal and torsional)	16.67
2	2	Balancing of rotating masses	8.33
3	3	Determination of critical speed of a rotating shaft.	8.33
4	4	Determination of equilibrium speed, sensitiveness, power and effort of Porter/Proel /Hartnel Governor.	16.67
5	5	Determination of Fringe constant of Photo elastic material using. a) Circular disc subjected to diametric compression. b) Pure bending specimen (four point bending)	12.5
6	6	Determination of stress concentration using Photo elasticity for simple components like plate with a hole under tension or bending, circular disk with circular hole under compression, 2D Crane hook.	18.75
7	7	Determination of Pressure distribution in Journal bearing.	6.25
8	8	Determination of Principal Stresses and strains in a member subjected to combined loading using Strain rosettes	6.25
9	9	Determination of stresses in Curved beam using strain gauge.	6.25

12.0 **QUESTION BANK**

- 1. What are the different types of vibrations?
- 2. What is natural frequency?
- 3. What is resonance?
- 4. What is the critical speed?
- 5. Why we are balancing the rotating masses?
- 6. What is the meaning of stress concentration?
- 7. Define sensitivity, effort, power in governors.
- 8. What is the difference between journal and bearing?
- 9. Define the principal stress.
- 10. What is the difference between strain rosettes and strain gauges?
- 11. What is the difference between governor and fly wheel?

Prepared by		
Quelui	Note	Doy c
Prof. S. A. Goudadi	HOD	Principal