

# **Department of Mechanical Engineering**

# COURSE PLAN 2023-24

# **III Semester**



S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi**  *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

### **INSTITUTE VISION**

"To be a preferred institution in Engineering Education by achieving excellence in teaching and research and to remain as a source of pride for its commitment to holistic development of individual and society"

### **INSTITUTE MISSION**

"To continuously strive for the overall development of students, educating them in a state-of-the-art-infrastructure, by retaining the best practices, people and inspire them to imbibe real time problem solving skills, leadership qualities, human values and societal commitments, so that they emerge as competent professionals"



### DEPARTMENT OF MECHANICAL ENGINEERING

### **VISION**

"To be the centre of excellence in providing education in the field of Mechanical Engineering to produce technically competent and socially responsible engineering graduates"

### **MISSION**

"Educating students to prepare them for professional competencies in the broader areas of the Mechanical Engineering field by inculcating analytical skills, research abilities and encouraging culture of continuous learning for solving real time problems using modern tools"

#### **Program Educational Objectives (PEOs)**

#### The Graduates will be able to

- **PEO1:** Acquire core competence in Applied Science, Mathematics and Mechanical Engineering fundamentals to excel in professional career and higher study
- PEO2: Design, demonstrate and analyze the mechanical systems which are useful to society.
- **PEO3:** Maintain professional & ethical values, employability skills, multidisciplinary approach & an ability to realize engineering issues to broader social context by engaging in lifelong learning.

#### **Program Specific Outcomes (PSOs)**

- **PSO1:** Able to apply the basic principles of Mechanical Engineering in various practical fields to solve societal problems by engaging themselves in many state/national level projects.
- **PSO2:** Able to analyze and design basic mechanical system using relevant tools and techniques.
- **PSO3:** Able to resolve contemporary issues of industries through industry institute interaction and alumni social networks

#### **Program Outcomes (POs)**

- **PO1:** Engineering knowledge- Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Problem analysis- Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:Design/development of solutions-** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:**Conduct investigations of complex problems- Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:Modern tool usage-** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:The engineer and society-** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:Environment and sustainability-** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:Ethics-** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:Individual and team work-** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:Communication-** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance- Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:Life-long learning-** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

### **CONTENTS**

| Sl. No.                            | Торіс                                      |         |     |  |  |
|------------------------------------|--------------------------------------------|---------|-----|--|--|
| 1                                  | 1 Vision and Mission                       |         |     |  |  |
| 2                                  | PEOs, PSOs and POs                         |         | iii |  |  |
| 3                                  | Departmental Resources                     |         | V   |  |  |
| 4                                  | Teaching Faculty Details                   |         | vi  |  |  |
| 5                                  | Academic Calendar                          |         | vii |  |  |
| 6 Scheme of Teaching & Examination |                                            |         |     |  |  |
|                                    | Theory Course Plan                         |         |     |  |  |
| 1                                  | Mechanics of Materials (PCC)               | BME301  |     |  |  |
| 2                                  | Manufacturing Process (IPCC)               | BME302  |     |  |  |
| 3                                  | Material Science and Engineering (IPCC)    | BME303  |     |  |  |
| 4                                  | Basic Thermodynamics (PCC)                 | BME304  |     |  |  |
| 5                                  | Computer Aided Machine Drawing (PCCL)      | BMEL305 |     |  |  |
| 6                                  | Smart Materials & Systems                  | BME306C |     |  |  |
| 7                                  | Social Connect and Responsibility (UHV)    | BSCK307 |     |  |  |
| 8                                  | Physical Education (PE) BPEK359            |         |     |  |  |
|                                    | Laboratory – Course Plan and Viva Que      | stions  |     |  |  |
| 9                                  | Advanced Python Programming: (AEC/SEC–III) | BME358X |     |  |  |



 S J P N Trust's
 Mech. Engg. Dept.

 Hirasugar Institute of Technology, Nidasoshi
 Course Plan

 Inculcating Values, Promoting Prosperity
 Ill SEM

 Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.
 Ill SEM

 Accredited at 'A' Grade by NAAC
 2023-24 Odd Sem

### **Departmental Resources**

Department of Mechanical Engineering was established in the year 1996 and is housed in a total area of **2584.5 Sq. Meters**.

|            | Faculty Position |                 |                       |  |  |  |
|------------|------------------|-----------------|-----------------------|--|--|--|
| Sl.<br>No. | Category         | No. in position | Average<br>experience |  |  |  |
| 1          | Teaching faculty | 09              | 20                    |  |  |  |
| 2          | Technical staff  | 05              | 18                    |  |  |  |
| 3          | Helper / Peons   | 03              | 14                    |  |  |  |

#### **Major Laboratories**

| S.N. | Name of the laboratory                         | Area in<br>Sq. Meters | Amount Invested<br>(Rs.) |
|------|------------------------------------------------|-----------------------|--------------------------|
| 1    | Basic Workshop Laboratory                      | 170                   | 438593                   |
| 2    | Fluid Mechanics Machinery Laboratory           | 172                   | 775916.75                |
| 3    | Energy Conversion Engg. Laboratory             | 173                   | 1278158.2                |
| 4    | Machine shop Laboratory                        | 170                   | 1372566.5                |
| 5    | Foundry & Forging Laboratory                   | 179                   | 321057.11                |
| 6    | Design Laboratory                              | 73                    | 365861                   |
| 7    | Heat & Mass Transfer Laboratory                | 148                   | 524576                   |
| 8    | Metallography & Material Testing Laboratory    | 149                   | 1102945.2                |
| 9    | Mechanical Measurements & Metrology Laboratory | 95                    | 557593.75                |
| 10   | CIM & Automation/CAMA Laboratory               | 66                    | 5114658                  |
| 11   | Computer Aided Machine Drawing Laboratory      | 66                    | 2197382                  |
| 12   | Computer Aided Engg Drawing Laboratory         | 66                    | 2818657                  |
| 13   | Department/Other                               |                       | 2107430                  |
| 14   | Research Centre                                | 73                    | 640747                   |
|      | Total                                          | 1527                  | 19616142                 |



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC **Programmes Accredited by NBA: CSE & ECE**

Mech. Engg. Dept. Course Plan III SEM 2023-24 Odd Sem

### **Teaching Faculty Details**

| S.N. | Faculty Name         | Faculty Name Designation Qualification Area of specialization |                | Teaching Exp<br>(in years)           | Contact Nos. |            |
|------|----------------------|---------------------------------------------------------------|----------------|--------------------------------------|--------------|------------|
| 1    | Dr. S. C. Kamate     | Principal                                                     | Ph. D          | Thermal(Cogeneration)                | 32           | 9480849331 |
| 2    | Dr. S. N. Topannavar | Assoc. Prof.                                                  | Ph. D          | Thermal Power Engg.                  | 24           | 9482440235 |
| 3    | Prof. K. M. Akkoli   | Assoc. Prof.                                                  | Ph. D          | Thermal Power Engg.                  | 19           | 9739114856 |
| 4    | Prof. D. N. Inamdar  | Asst. Prof                                                    | M Tech.(Ph. D) | Tool Engg                            | 20           | 9591208980 |
| 5    | Prof.M.S.Futane      | Asst. Prof                                                    | M Tech.        | Computer Integrated<br>Manufacturing | 17           | 9164105035 |
| 6    | Prof.S. A. Goudadi   | Asst. Prof                                                    | M Tech.        | Design Engineering                   | 15           | 9448876682 |
| 7    | Prof.M.M.Shivashimpi | Asst. Prof                                                    | M Tech.(Ph.D)  | Thermal Power Engg.                  | 16           | 9742197173 |
| 8    | Prof.M.A.Hipparagi   | Asst. Prof                                                    | M Tech.(Ph.D)  | Production Technology                | 14           | 7411507405 |
| 9    | Prof. G. M. Zulapi   | Asst. Prof                                                    | M Tech.        | Product Design &<br>Manufacturing    | 15           | 9480213587 |
| 10   | Prof. P.M.Kokitakar  | Asst. Prof                                                    | M Tech.        | Design Engineering                   | 05           | 8095048022 |



Ref.

## S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

Mech. Engg. Dept.

**Course Plan** 

III SEM 2023-24 Odd Sem

#### REVISED ACADEMIC CALENDAR OF EVENTS-02 (CoE-02) OF III & V SEM FOR THE AY: 2023-24

VTU CoE Notification No.: VTU/BGM/ACA/2023-24/3252, Dated 30<sup>th</sup> Sept. 2023
 VTU CoE Notification No.: VTU/BGM/ACA/2023-24/2668, Dated 25<sup>th</sup> Aug. 2023
 VTU Revised CoE Notification No.: VTU/BGM/ACA/2023-24/3681, Dated 20<sup>th</sup> Oct. 2023

|                |                | <u> </u>        | alenda            | ar             |             |                            | Date                                         | Events & Holidays                                              |
|----------------|----------------|-----------------|-------------------|----------------|-------------|----------------------------|----------------------------------------------|----------------------------------------------------------------|
| -              |                |                 |                   |                | _           |                            | 28 <sup>98</sup> Sept.2023                   | GH: Eid-Milad                                                  |
|                |                | Octo            | ber -2            | 2023           | _           |                            | 2 <sup>nd</sup> Oct. 2023                    | GH: Gandhi Jayanthi                                            |
| Sun            | Mon            | Tue             | Wed               | Thu            | Fri         | Sat                        | 14 <sup>th</sup> Oct.2023                    | GH: Mahalaya Amayasya                                          |
| 1              | - 2            | 3               | . 4               | 5              | 6           | 7                          | 17" Oct. 2023                                | Fresher's day: A Welcome Function for 1" year students         |
| 8              | 9              | 10              | 11                | 12             | 13          | 21                         | 23" -24" Oct. 2023                           | GH: Mahanavami, Ayudhapooja, Vijayadasami                      |
| 12             | 10             | 12.0            | 18                | 26             | 20          | Nas                        | 25" Oct to                                   | V Sem Innovation/Entrepreneurship/Societal Internahip          |
| 20             | 20             | 21              | 45                | 20             | 21          | 4.8                        | 2.8 Nov. 2023                                | (2023 Seneme)                                                  |
| 47             | 30             | -21             | -                 | -              | -           |                            | 28 <sup>th</sup> Oct. 2023                   | Valmiki Jayanti                                                |
|                | 1              | Nover           | nber -            | -2023          | 6           |                            | 1" Nov. 2023                                 | GH: Kannada Rajyothsaya                                        |
| Sim            | Mon            | Tue             | Wed               | Thu            | Fri         | Sat                        | 14th Nov. 2023                               | GH: Balipadyami, Deepavali                                     |
|                | 1910at         | 1.00            |                   | 2              | 3           | 4                          | 15 <sup>th</sup> Nov. 2023                   | Commencement of III Semester Classes                           |
| 5              | 6              | 7               | 8                 | 9              | 10          | 11                         | 25 <sup>th</sup> Nov. 2023                   | Commencement of V Semester Classes                             |
| 12<br>19<br>26 | 13<br>20<br>27 | 14<br>21<br>28  | 22<br>29          | 16<br>23       | 17<br>24    | 18                         | 30 <sup>th</sup> Nov. 2023                   | GH: Kanakadasa Jayanti                                         |
| ALC: No.       | -              | Decer           | nher -            | 2023           |             | -                          | 8 <sup>th</sup> -9 <sup>th</sup> Dec. 2023   | International Conference                                       |
| Sum            | Mar            | Tere            | West              | The            | Te:         | Set                        | 25 <sup>th</sup> Dec. 2023                   | GH: Christmas                                                  |
| Sam            | NON            | 100             | wed               | inu            | 1           | 2                          | 21 <sup>st</sup> -23 <sup>rd</sup> Dec 2023  | 14 IA Test for III & V Semesters                               |
| 3              | 4              | 5               | 6                 | 7              | 8           | 9                          | 23 <sup>rd</sup> Dec 2023                    | 1 <sup>st</sup> Feedback on Teaching J enemine (III & V Seme ) |
| 10             | 11             | 12              | 13                | 14             | 15          | 16                         | 27 <sup>th</sup> Dec. 2023                   | Display of 1 <sup>st</sup> 1A Test Marks (III & V Sems.)       |
| 17             | 18             | 19              | 20                | 21             | 22          | 23                         | 12 <sup>m</sup> Jan. 2024                    | National Youth Day                                             |
| 24             | 25             | 26              | 27                | 28             | 29          | 30                         | 15 <sup>th</sup> Jan. 2024                   | GH: Uttarayana Punya Kala Sankrathi (Tentatiye)                |
| 31             |                | 1               |                   |                |             |                            | 19th -20th Jan, 2024                         | Lab IA Test-I (III Sem. 2022 Scheme & V Sem. 2021 Scheme)      |
|                |                | Jam             | ary -             | 2024           |             |                            | 22nd-24th Jan, 2024                          | 2 <sup>nd</sup> IA Test for III & V Semesters                  |
| Calan.         | Man            | Tue             | Wed               | The            | Del         | 1 Sec.                     | 24 <sup>th</sup> Jan. 2024                   | 2 <sup>nd</sup> Feedback on Teaching-Learning (III & V Sems.)  |
| Sun            | 1              | 2               | 3                 | 4              | 5           | 6                          | 26 <sup>th</sup> Jan. 2024                   | Republic Day                                                   |
| 7              | 8              | 9               | 10                | 11             | 12          | 13                         | 29 <sup>th</sup> Jan, 2024                   | Display of 2nd 1A Test Marks (III & V Sens.)                   |
| 14 21          | 22             | 23              | 24                | 25             | 26          | 27                         | 9 <sup>th</sup> -10 <sup>th</sup> Feb. 2024  | Lab IA Test-II (III Sen. 2022 Scheme)                          |
| 40             | 49             | 50              | -21               | 1              | -           | den al                     | 15 <sup>th</sup> -17 <sup>th</sup> Feb. 2024 | 3rd 1A Test for III Semester                                   |
|                | 1              | ebru            | ary -1            | 2024           |             |                            | 10 <sup>th</sup> Eab. 2024                   | Dienlay of 3 <sup>rd</sup> 1A Tast Marks (III Sam )            |
| sun :          | Mon            | Tue             | Wed               | Thu            | Fri         | Sat                        | 15 PC0. 2024                                 | tongoay of 5 TA Test marks (ITI Sem.)                          |
|                |                |                 |                   | 1              | 2           | 3                          | 20 Pen, 2024                                 | Last working they of the 111 Semester                          |
| 4              | 5              | 6               | 7                 | 8              | 9           | 10.                        | 21" -29" Feb. 2024                           | HI Semester VTU Practical Examination                          |
| 11             | 12             | 13              | 14                | 15             | 16          |                            | 04" -23" March 2024                          | III Semester VTU Theory Exams (SEE)                            |
| 25             | 26             | 27              | 28                | 20             | 2.0         | -24                        | 1" & 2" March 2024                           | Lab IA Test-II (V Sem. 2021 Scheme)                            |
| area 1         | - 442 - 1      | - M.C 1         |                   | - & X          |             |                            | 5"-7" March 2024                             | 3" IA Test for V Sem                                           |
|                |                |                 |                   |                |             |                            | 9" March 2024                                | Display of 5 TA Test Marks                                     |
|                |                | Ma              | rch -2            | 024            |             |                            | 8" March 2024                                | GHI Mahashiyaratri & International Women's Day                 |
| Sun            | Mon            | Tue             | Wed               | Thu            | Fri         | Sat                        | 11th 20 <sup>th</sup> March 2024             | V Semester Practical Examination                               |
| 31             |                |                 |                   |                |             | 2                          | 1 <sup>st</sup> April 2024                   | Commencement of IV Semester                                    |
| 3              | 4              | 5               | 6                 | 7              |             | Dott                       | 22nd March-20th April 24                     | V Semester VTU Theory Exams (SEE)                              |
| 10             | 11             | 12              | 13                | 14             | 15          | 16                         | and a stand                                  | Parallel (10 mony calls (del)                                  |
| 17             | 18             | 19              | 20                | 21             | 22          | 23                         | 22 <sup></sup> April 2024                    | Commencement of VI Semester                                    |
| 2.44           | 10             | 20              | C                 | 500            | -           | 100                        | 29" March 2024                               | GH: Good Friday                                                |
| IQ/            |                | Dr.S.N<br>ordin | N. Topa<br>ator & | annav<br>c Dea | ar<br>n (Ad | ( <del>N)</del><br>cademis | GH: General Hondrath                         | Dr.S.C.Kamate<br>Principal                                     |

Phone:+91-8333-278887, Fax:278886, Web:www.hsit.ac.in, Mail:principal@hsit.ac.in



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE & ECE

### **VTU Scheme of Teaching and Examination**

|           |        |                | VISVESVARAY                                               | A TECHNOLOGICAL UN                                                    | IVERSITY,                   | BELAGA      | AVI                 |     |                     |          |           |            |         |
|-----------|--------|----------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|-------------|---------------------|-----|---------------------|----------|-----------|------------|---------|
|           |        |                | B                                                         | .E. in Mechanical Engi                                                | neering                     |             |                     |     |                     |          |           |            |         |
|           |        |                | Scheme                                                    | of Teaching and Exam                                                  | ninations2                  | 2022        |                     |     |                     |          |           |            |         |
|           |        |                | Outcome Based Educa                                       | ation (OBE) and Choice                                                | Based Cre                   | edit Syst   | tem (CBC            | S)  |                     |          |           |            |         |
|           |        |                | (Effecti                                                  | ve from the academic                                                  | year 2023                   | -24)        |                     |     |                     |          |           |            |         |
| III SEM   | AESTER | 82             |                                                           |                                                                       |                             |             |                     |     |                     | 2000     |           |            | -       |
|           |        |                |                                                           | ê                                                                     | Te                          | aching Hou  | rs/week             |     |                     | Erau     | ination   |            | -       |
| SI.<br>No | Course | Course<br>Code | Course Title                                              | Teaching<br>partment ()<br>and Question<br>aper Settin<br>Board (PSB) | Theory<br>Lecture           | Tutorial    | Prackal/<br>Drawing | SDA | uration in<br>hours | DE Marks | see Marks | otal Marks | Credits |
|           |        |                |                                                           | 8                                                                     | L                           | Т           | P                   | S   | •                   | U        |           | i Ali      |         |
| 1         | PCC    | BME301         | Mechanics of Materials                                    | TD- ME<br>PSB-ME                                                      | 2                           | 2           | 0                   |     | 03                  | 50       | 50        | 100        | 3       |
| 2         | IPCC   | BME302         | Manufacturing Process                                     | TD: ME<br>PSB: ME                                                     | 3                           | 0           | 2                   |     | 03                  | 50       | 50        | 100        | 4       |
| 3         | IPCC   | BME303         | Material Science and Engineering                          | TD: ME<br>PSB: ME                                                     | 3                           | 0           | 2                   |     | 03                  | 50       | 50        | 100        | 4       |
| 4         | PCC    | BME304         | Basic Thermodynamics                                      | TD: ME<br>PSB: ME                                                     | 2                           | 2           | 0                   |     | 03                  | 50       | 50        | 100        | 3       |
| 5         | PCCL   | BMEL305        | Introduction to Modelling and Design<br>for Manufacturing | TD: ME<br>PSB: ME                                                     | 0                           | 0           | 2                   |     | 03                  | 50       | 50        | 100        | 1       |
| 6         | ESC    | BME306x        | ESC/ETC/PLC                                               | TD: Respective Dept.<br>PSB: Respective Dept.                         | 3                           | 0           | 0                   |     | 03                  | 50       | 50        | 100        | 3       |
| 7         | UHV    | BSCK307        | Social Connect and Responsibility                         | Any Department                                                        | 0                           | 0           | 2                   | i i | 01                  | 100      |           | 100        | 1       |
|           |        |                |                                                           |                                                                       | lf th                       | e course is | s a Theory          |     | 01                  |          |           |            |         |
| 8         | AEC/   | BME358x        | Ability Enhancement Course/Skill                          |                                                                       | 1                           | 0           | 0                   |     | UI                  | 50       | 50        | 100        | 1       |
|           | SEC    |                | Enhancement Course - III                                  |                                                                       | If a course is a laboratory |             |                     | 02  |                     |          |           | 1          |         |
|           | 2      | PNEKSED        | National Convice Scheme (NSS)                             | NSC coordinator                                                       | U                           | 0           | 2                   | -   | 2245                |          |           |            | -       |
|           |        | DINSK359       | Physical Education (PE) (Sports and                       | Physical Education                                                    | 1                           | EN.         | 100                 |     |                     | 196235   |           | 93392      | 203     |
| 9         | MC     | BPEK359        | Athletics)                                                | Director                                                              | 0                           | 0           | 2                   |     |                     | 100      |           | 100        | 0       |
|           |        | BYOK359        | Yoga                                                      | Yoga Teacher                                                          |                             |             |                     |     |                     |          |           |            | _       |
|           |        |                |                                                           |                                                                       |                             |             |                     | 1   | Total               | 550      | 350       | 900        | 20      |



### s J P Nitrust's Hirasugar Institute of Technology, Nidasoshi.

Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to Visvesvaraya Technological University - Belagavi. Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC and Programmes Accredited by NBA:CSE and ECE.

III<sup>rd</sup> Semester 2023-24

| Subject Title                  | <b>MECHANICS OF MATE</b> | RIALS       |     |
|--------------------------------|--------------------------|-------------|-----|
| Course Code                    | BME301                   | CIE Marks   | 50  |
| Teaching Hours/Week (L:T:P: S) | 2-2-0-0                  | SEE Marks   | 50  |
| Total Hours of Pedagogy        | 40                       | Total Marks | 100 |
| Credits                        | 03                       | Exam Hours  | 03  |

# FACULTY DETAILS: Name: Prof. D.N.Inamdar. Designation: Asst. Professor Experience: 20 No. of times course taught: 11 Specialization: Tool Design

### **1.0** Prerequisite Subjects:

| Sl. No | Branch                                               | Semester                                              | Subject                                                    |
|--------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
| 01     | Students should have the knowledge of basic subjects | I/II Sem, High<br>school & PU level<br>Physics basics | Engineering Mechanics, Classical<br>Physics, Trigonometry, |

### 2.0 Course Objectives

Students will be able

- 1. To provide the basic concepts and principles of strength of materials.
- 2. To give an ability to calculate stresses and deformations of objects under external loadings.
- 3. To give an ability to apply the knowledge of strength of materials on engineering applications and design problems.

### **3.0 Course Outcomes**

Having successfully completed this course, the student will be able to understand the,

| СО     | Course Outcome                                                                                                                               | Cognitive<br>Level | POs                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| C302.1 | Understand the concepts of stress and strain in simple and compound bars.                                                                    | L1,L2              | PO1,<br>PO2,PO3,PO4 |
| C302.2 | Explain the importance of principal stresses and principal planes & analyze cylindrical pressure vessels under various loadings              | L1,L2 & L3         | PO1,<br>PO2,PO3,PO4 |
| C302.3 | Apply the knowledge to understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment. | L1,L2 & L3         | PO1,<br>PO2,PO3,PO4 |
| C302.4 | Evaluate stresses induced in different cross-sectional members subjected to shear loads.                                                     | L1,L2 & L3         | PO1,<br>PO2,PO3,PO4 |
| C302.5 | Apply basic equation of simple torsion in designing of circular shafts & Columns                                                             | L1,L2 & L3         | PO1,<br>PO2,PO3,PO4 |
|        | Total Hours of instruction                                                                                                                   | 5                  | 0                   |

4.0 Course Content

|                               | SJPN2Trust's<br>Hirzsugar Institute of Tachnology, Nidasoshi                                                                                                                      | Mech. Engg.<br>Dept.       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (DOO)                         | Thiasugal institute of recimology, Muasosin.                                                                                                                                      | Course Plan                |
| NO CON                        | Inculcating Values, Promoting Prosperity<br>Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to                                                     | III <sup>rd</sup> Semester |
| ngel (ma.<br>ISTID ()), trite | Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. | 2023-24                    |

Simple stress and strain: Definition/derivation of normal stress, shear stress, and normal strain and shear strain – Stress strain diagram for brittle and ductile materials - Poisson's ratio & volumetric strain - Elastic constants relationship between elastic constants and Poisson's ratio - Generalised Hook's law - Deformation of simple and compound bars, Resilience, Gradual, sudden, impact and shock loadings - thermal stresses.. 10 hours

#### Module-2

Bi-axial Stress system: Introduction, plane stress, stresses on inclined sections, principal stresses and maximum shear stresses, graphical method - Mohr's circle for plane stress.

Thick and Thin cylinders: Stresses in thin cylinders, Lame's equation for thick cylinders subjected to internal and external pressures, Changes in dimensions of cylinder (diameter, length and volume), simple numerical. 10 hours

#### Module-3

Bending moment and Shear forces in beams: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads and combination of these loads - Point of contra flexure. 05 hours

#### Module-4

Theory of simple bending - Assumptions - Derivation of bending equation - Neutral axis - Determination of bending stresses - section modulus of rectangular and circular sections (Solid and Hollow), I, T and Channel sections - Design of simple beam sections, Shear Stresses: Derivation of formula - Shear stress distribution across various beams sections like rectangular, circular, triangular, I, and T sections. 05 hours

#### Module-5

Torsion of circular shafts: Introduction, pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts, power transmitted by solid and hollow circular shafts.

Theory of columns – Long column and short column - Euler's formula – Rankine's formula.

#### 10 hours

#### 5.0 **Relevance to future subjects**

| Sl. No | Semester | Subject                         | Topics                                                    |
|--------|----------|---------------------------------|-----------------------------------------------------------|
| 01     | VII/VIII | Project work                    | Fundamental concepts                                      |
| 02     | VII      | Dynamics of Machines            | Fundamental concepts of vibrations and mechanical systems |
| 03     | V/VI     | Design of Machine Elements I/II | Design of Keys, Shafts, couplings, Fasteners, Keys and    |
|        |          |                                 | Joints, Rivets, curved beams, springs cylinders.          |

#### **Relevance to Real World** 6.0

| SL.No | Real World Mapping                                                                        |
|-------|-------------------------------------------------------------------------------------------|
| 01    | Checking for solid body stability & Analysis of Stresses and Strains in machine elements. |
| 02    | Design of Boiler, column, Gear, Keys, Beams and Shaft.                                    |
| 03    | Determination of Mechanical properties of engineering materials.                          |

#### 7.0 **Gap Analysis and Mitigation**

| Sl. No | Delivery Type  | Details                                                                    |
|--------|----------------|----------------------------------------------------------------------------|
| 01     | NPTEL Tutorial | Topic: concepts of stress and strain, plane stress system, shear force and |
|        |                | bending moment diagram, torsion, columns and theories of failures.         |

#### **Books Used and Recommended to Students** 8.0

| Sl.No | Title of the Book | Name of the Author/s | Name of the Publisher | Edition and Year |
|-------|-------------------|----------------------|-----------------------|------------------|



### s ی P Ntrust's Hirasugar Institute of Technology, Nidasoshi.

Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to Visvesvaraya Technological University - Belagavi. Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC and Programmes Accredited by NBA:CSE and ECE. Mech. Engg. Dept. Course Plan

III<sup>rd</sup> Semester

2023-24

| Text Bo   | oks                                      |                                                                      |                                           |                     |
|-----------|------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|---------------------|
| 01        | Mechanics of Materials                   | J M Gere, B J Goodno                                                 | Cengage                                   | Eighth edition 2013 |
| 02        | Fundamentals of<br>Strength of Materials | P N Chandramouli                                                     | PHI Learning Pvt. Ltd                     | 2013                |
| 03        | Strength of Materials                    | R K Rajput                                                           | S.Chand and Company<br>Pvt. Ltd           | 2014                |
| Reference | e Books                                  |                                                                      |                                           |                     |
| 01        | Strength of Materials                    | R. Subramanian                                                       | Oxford                                    | 2005                |
| 02        | Strength of Materials                    | S. S. Ratan                                                          | Tata McGraw Hill                          | 2nd Edition, 2008   |
| 03        | Mechanics of Materials                   | S.C.Pilli and N<br>Balasubramanya                                    | Cengage                                   | 2019                |
| 04        | Mechanics of Materials                   | Ferdinand Beer,<br>Russell Johston, John<br>Dewolf, David<br>Mazurek | McGraw Hill Education<br>(India) Pvt. Ltd | Latest Edition      |
| 05        | Mechanics of Materials                   | R C Hibbeler                                                         | Pearson                                   | Latest Edition      |
| Addition  | nal Study material & e-Book              | S                                                                    | ·                                         | •                   |

1. Strength of Materials by R.K.Bansal pdf drive

- 2. Strength of Materials by R.K.Rajaput pdf drive
- 9.0

### **Relevant Websites (Reputed Universities and Others) for Notes** /Animation / Videos Recommended

#### Website and Internet Contents References

1) Online Lectures on MOM-18ME32by Prof. D.N.Inamdar, HSIT, Nidasoshi

Link: https://drive.google.com/drive/folders/1scRLij489y86r4ONDNXZ-RIxt\_pfJQoP?usp=sharing\_

- 2) Introduction to Strength of materials: https://www.youtube.com/watch?v=GkFgysZC4Vc
- 3) Solid Mechanics: https://www.youtube.com/watch?v=A1SWKe6ZwVc
- 4) Advanced strength of Materials: https://www.youtube.com/watch?v=\_2d8YsXwm7M
- 5) Video on Torsion of circular shaft: <u>https://www.youtube.com/watch?v=ICDZ5uLGrI4</u>
- 6) Video on Bending of beam: <u>https://www.youtube.com/watch?v=asBW0Ojc0bY</u>
- 7) Video on deriving bending equation: <u>https://www.youtube.com/watch?v=AvCkrU3KaZw</u>
- 8) GATE: https://www.btechguru.com/GATE--mechanical-engineering--strength-of-materials-video-lecture--23--133.html
- 9) Theories of Failures: <u>https://nptel.ac.in/courses/105102090/20</u>
- 10) Columns:
  - https://www.youtube.com/watch?v=hwpGAxa8UoI&list=PL4K9r9dYCOoqADwI0zQXTJ6wy\_Dr37Fy2
  - https://www.youtube.com/watch?v=F692spiIyHU&list=PL4K9r9dYCOoqADwI0zQXTJ6wy Dr37Fy2&index=2
  - https://www.youtube.com/watch?v=DYeRXKa8mKA&list=PL4K9r9dYCOoqADwI0zQXTJ6wy\_Dr37Fy2&index=3
  - https://www.youtube.com/watch?v=szApiRoy\_wY&list=PL4K9r9dYCOoqADwI0zQXTJ6wy\_Dr37Fy2&index=6
- 11) Strain Energy Theory
  - https://www.youtube.com/watch?v=szApiRoy\_wY&list=PL4K9r9dYCOoqADwI0zQXTJ6wy\_Dr37Fy2&index=6
  - https://www.youtube.com/watch?v=99\_UsxPgDqs
  - https://www.youtube.com/watch?v=sur6mZ\_66ak
  - <u>https://www.youtube.com/watch?v=dX8hvaFczY4</u>
  - <u>https://www.youtube.com/watch?v=xf2UoWkIa5w</u>
- 12) Gate solution with Key answers\_
  - <u>www.iesacademy.com</u>
  - https://www.iesacademy.com/uploaded\_files/download/small-1465029586.pdf
  - https://www.youtube.com/watch?v=LF5GQNDVd7s&list=PLgzsL8klq6DI7pZwzHuLgpeQMLoTIGVgO
- 13) Stress Strain Theory at a Glance for IES & Gate
  - https://www.iesacademy.com/uploaded\_files/download/small-1463734449.pdf

| <b>A</b>              | S J P N4Trust's                                                                                                              | Mech. Engg.                |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| The Party is a second | Hirasugar Institute of Technology Nidasoshi                                                                                  | Dept.                      |
| 1 DOON                | masugai mstitute of recimology, widasosm.                                                                                    | Course Plan                |
|                       | Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt, of Karnataka and Permanently Affiliated to   | III <sup>rd</sup> Semester |
|                       | Visvesvaraya Technological University - Belagavi.                                                                            |                            |
| ENTE () STRE          | Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. | 2023-24                    |
| 14) Previou           | Question Paners                                                                                                              |                            |

) Previous Question Papers: <u>https://drive.google.com/file/d/1zdKzCsXBJWToiys</u>54kv6pyXpWY6XMHYA/view

### **10.0** Magazines/Journals Used and Recommended to Students

| Sl.No | Magazines/Journals                                            | website                                                    |
|-------|---------------------------------------------------------------|------------------------------------------------------------|
| 1     | Elsevier                                                      | https://www.journals.elsevier.com                          |
| 2     | Journal of Gears                                              | http://journals.sagepub.com                                |
| 3     | Journal of Manufacturing Science and<br>Engineering           | http://manufacturingscience.asmedigitalcollection.asme.org |
| 4     | International Journal of Renewable<br>Energy Research (IJRER) | http://www.ijrer.org                                       |
| 5     | Magazines                                                     | https://www.asminternational.org/news/magazines            |

### **11.0 Examination Note**

#### **CONTINUOS INTERNAL EVALUATION: 40 Marks**

Scheme of Evaluation for Internal Assessment (30 Marks): Internal Assessment test in the same pattern as that of the main examination (Average of all three tests). Questions shall be answered in internal assessment books (blue book).Internal assessment book shall be submitted.

Scheme of Evaluation for Assignments (10 Marks): Assignment on each module is to be submitted and each module carries 10 marks (Average of all five assignments). Assignment book shall be submitted.

#### SCHEME OF END SEMESTER EXAMINATION:

Two full questions (with a maximum of four sub questions) of twenty mark each to be set from each module. Each question should cover all the contents of the respective module. Students have to answer five full questions choosing one full question from each module. From each module out of two full questions one full question to be answered and each carries 20 Marks. Five full question to be answered 5x20 = 100 Marks. Later final marks are reduced to 60 marks.

### 12.0 Course Delivery Plan

| Madula    | Lecture | Contont of Lasturer                                                               | % of    |
|-----------|---------|-----------------------------------------------------------------------------------|---------|
| No.       |         | Content of Lecturer                                                               | Portion |
|           | 1       | Introduction to Mechanics of Materials                                            |         |
|           | 2       | Concepts of stress and strain, Hooke's law and Mechanical Properties of Materials |         |
|           | 3       | Calculation of stresses and deformations in straight bar                          |         |
|           | 4       | Calculation of stresses and deformations in stepped bar                           |         |
| Modulo 1  | 5       | Calculation of stresses and deformations in Tapered and composite Sections.       | 20 %    |
| Wibuule-1 | 6       | Stresses due to temperature changes                                               |         |
|           | 7       | Shear stress, shear strain, Poisson's ratio and lateral strain                    |         |
|           | 8       | Generalized hooks law, Elastic constants                                          |         |
|           | 9       | Relationship between elastic constants                                            |         |
|           | 10      | Problems on elastic constants                                                     |         |
|           | 11      | Analysis of Stress and Strain                                                     |         |
|           | 12      | Plane stress system                                                               |         |
|           | 13      | Components of stresses acting on inclined plane                                   |         |
|           | 14      | Principal stresses and their planes                                               | 10 %    |
| Module-2  | 15      | Maximum shear stresses, planes and principal angles.                              | 40 /8   |
|           | 16      | Problems on stress components calculations                                        |         |
|           | 17      | Mohr's circle method for plane stress analysis                                    |         |
|           | 18      | Cylinders: Thin cylinders, Hoop's stress, maximum shear stress                    |         |
|           | 19      | Circumferential stress and longitudinal stresses                                  |         |

| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        | S J P NวTrust's                                                                          | Mech.     | Engg.  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------|--------|--|--|
| A CONTRACTOR OF A CONTRACTOR O | F                                                                                                                                                                                                                                                                      | lirasugar Institute of Technology, Nidasoshi. 🛛 🗕                                        | Cours     | ο Plan |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                          |           |        |  |  |
| V BV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to<br>Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. |                                                                                          |           |        |  |  |
| ENTR OU THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                          |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                     | Thick cylinders and Lami's equation                                                      |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                     | Shear force and Bending moment diagrams                                                  |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                     | Definition of beam, Types of Beam, Loads and End Conditions.                             |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                     | Relationship between distributed load, Shear force and Bending moment                    |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                                                     | Determination of shear force and Bending moment for Cantilever, Simply suppo             | rted and  |        |  |  |
| Madala 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                     | Single and double overhanging beam subjected to point, UDL, UVL, COUPLE & Bracket        | load      | 60 %   |  |  |
| Niodule-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                     | Bending stresses in Beam: Theory of pure bending                                         |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                     | Curvature of beam, longitudinal strains in the beams                                     |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                     | Flexural Formula for beams                                                               |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                     | Bending and Shear stress distributions in beams with rectangular, I, T, C cross-se       | ections.  |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                     | Problems on Bending and Shear stress distributions in beams                              |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                     | <b>Deflection of Beams:</b> Relationship between moment, slope and deflection, Mommethod | nent area |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                                                                                                                                                                                                     | Macaulay's method. Problems to calculate slope and deflection for determinant b          | beams,    |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                     | Beams of uniform strength                                                                |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                     | Leaf springs.                                                                            |           | 80 %   |  |  |
| Module-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                     | TORSION: Torsion of solid circular and hallow shafts                                     |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                     | Torsional Moment of Resistance                                                           |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                                                                                                                                                                                                                                                                     | Power transmission of straight and stepped shafts                                        |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                                                                                                                                                                                                                                                     | Twisting in shaft sections                                                               |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                                                                                                                                                                                                                                                                     | Thin tubular and thin walled sections                                                    |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                                                                                                                                                                                                                                     | Problems on Torsions                                                                     |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        | Cylinders: Thin cylinders, Hoop's stress, maximum shear stress                           |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        | Circumferential stress and longitudinal stresses                                         |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        | Thick cylinders and Lami's equation                                                      |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                                                                                                                                                                                                                                                                     | Columns : Buckling and Stability of columns, critical load                               |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42                                                                                                                                                                                                                                                                     | Analysis of columns with pinned ends and other support conditions                        |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                                                                                                                                                                                                                                                                     | Effective length of columns                                                              |           | 1000/  |  |  |
| Module-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                                     | Secant formula                                                                           |           | 100%   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                     | Problems on columns                                                                      |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                     | Strain Energy Theory                                                                     |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                                                                                                                                                                                                                                                     | Strain energy due to axial, shear, bending, torsion and impact load                      |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                                                                                                                                                                                                                                                                     | Castigliano's theorem I &II                                                              |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49                                                                                                                                                                                                                                                                     | Load deformation diagram                                                                 |           |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                     | Applications on Castigliano's theorem I &II                                              |           |        |  |  |

## 13.0 Assignments, Pop Quiz, Mini Project, Seminars

| Sl.No. | Title                 | Outcome expected       | Allied<br>study | Week<br>No. | Individual / Group<br>activity | Reference:<br>book/website<br>/Paper |
|--------|-----------------------|------------------------|-----------------|-------------|--------------------------------|--------------------------------------|
| 1      | Assignment 1:         | Students study the     | Module-1 of     |             | Group Activity. Each           | Book 1, 2 of                         |
|        | University Questions  | Topics and prepare the | the syllabus    |             | group should prepare           | the reference                        |
|        | on stress and strain  | multiple choice        |                 | 2           | minimum 05                     | list. Website of                     |
|        | concepts.             | questions with answer. |                 |             | questions expected.            | the Reference                        |
|        |                       |                        |                 |             |                                | list                                 |
| 2      | Assignment 2:         | Students study the     | Module-2 of     |             | Individual Activity.           | Book 1, 2 of                         |
|        | University Questions  | Topics and identify    | the syllabus    | 4           |                                | the reference                        |
|        | on Analysis of Stress | components of stresses |                 | 4           |                                | list. Website of                     |
|        | and Strain and Thick  | &construct Mohr's      |                 |             |                                | the Reference                        |

|   | <b>A</b>  |                      | S J P NcTrust's                                   |                                     |                       |                      |       |                  |  |
|---|-----------|----------------------|---------------------------------------------------|-------------------------------------|-----------------------|----------------------|-------|------------------|--|
|   |           | Hirasug              | Hirasugar Institute of Technology, Nidasoshi.     |                                     |                       |                      |       |                  |  |
|   |           |                      | Inculcating Values, Promoting Prosperity          |                                     |                       |                      |       |                  |  |
| N | V SV      | Approved by Al       | CTE, Recognized by Govt.                          | of Karnataka and                    | Permaner              | ntly Affiliated to   |       | " Semester       |  |
|   |           | Recognized under     | Visvesvaraya Technologie<br>2(f) &12B of UGC Act, | cal University - B<br>1956.Accredit | elagavi.<br>ed at 'A' | Grade by NAAC        |       | 2023-24          |  |
| - | END OF DR | and                  | Programmes Accredite                              | d by NBA:CSE                        | and EC                | E                    |       |                  |  |
|   |           | & Thin Cylinders     | circle for the given                              |                                     |                       |                      |       | list             |  |
|   |           |                      | plane stress system.                              |                                     |                       |                      |       |                  |  |
|   |           |                      | Calculation of stresses                           |                                     |                       |                      |       |                  |  |
|   |           |                      | developed in thick and                            |                                     |                       |                      |       |                  |  |
| ļ |           |                      | thin cylinders                                    |                                     |                       |                      |       |                  |  |
|   | 3         | Assignment 3:        | Students study the                                | Module-3 of                         |                       | Individual Activi    | ty &  | Book 1, 2 of     |  |
|   |           | University Questions | Topics and draw the                               | the syllabus                        |                       | multiple Cl          | noice | the reference    |  |
|   |           | on Shear Forces and  | SFD &BMD for the                                  |                                     | 6                     | questions and H      | obby  | list. Website of |  |
|   |           | Bending Moments      | beam subjected to                                 |                                     |                       | Project to illustrat | e the | the Reference    |  |
| ł |           | A · · · / A          | external load system                              | M 1.1 4 C                           |                       | SF &BM.              |       |                  |  |
|   | 4         | Assignment 4:        | Students shall study                              | Module-401                          |                       | Individual Activit   | у.    | BOOK 1, $2$ of   |  |
|   |           | On Theory of Simple  | handing Panding                                   | the synabus                         |                       |                      |       | list Website of  |  |
|   |           | Dir Theory of Shiple | organization for straight                         |                                     |                       |                      |       | the Deference    |  |
|   |           | Denuing              | beems and evaluation                              |                                     | 8                     |                      |       | list             |  |
|   |           |                      | of bending & shear                                |                                     |                       |                      |       | 1150             |  |
|   |           |                      | stresses in I & T                                 |                                     |                       |                      |       |                  |  |
|   |           |                      | sections                                          |                                     |                       |                      |       |                  |  |
| t | 5         | Assignment 5.        | Students shall study                              | Module-5 of                         |                       | Individual Activit   | v     | Book 1 2 of      |  |
|   | 5         | University Ouestions | the Torsion theory and                            | the syllabus                        |                       | mar radar richt ri   | 5     | the reference    |  |
|   |           | on Torsion and       | its equation, evaluation                          |                                     |                       |                      |       | list. Website of |  |
|   |           | Columns Failure:     | of torsional stresses ,                           |                                     |                       |                      |       | the Reference    |  |
|   |           |                      | moduus of rigidity                                |                                     |                       |                      |       | list             |  |
|   |           |                      | insolid and hollow                                |                                     |                       |                      |       |                  |  |
|   |           |                      | circular shafts.Also                              |                                     | 10                    |                      |       |                  |  |
|   |           |                      | theory of variety of                              |                                     |                       |                      |       |                  |  |
|   |           |                      | columns and calcution                             |                                     |                       |                      |       |                  |  |
|   |           |                      | methods of                                        |                                     |                       |                      |       |                  |  |
|   |           |                      | slenderness ratio and                             |                                     |                       |                      |       |                  |  |
|   |           |                      | stresses developed in                             |                                     |                       |                      |       |                  |  |
|   |           |                      | different columns                                 |                                     |                       |                      |       |                  |  |

## 14.0 QUESTION BANK

### Module1: Stress and Strain:

| 1.  | Define the stress and Strain.                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 2.  | State Hooke's law and define Poisson's ratio.                                                                   |
| 3.  | Draw Stress-Strain diagram for a ductile material.                                                              |
| 4.  | Define the following: i) Limit of Proportionality ii) Elastic limit iii) Yield point iv) Ultimate stress        |
|     | v) Breaking stress.                                                                                             |
| 5.  | Define i) stress ii) Hook's law iii) Elasticity iv) lateral strain.                                             |
| 6.  | Draw Stress-Strain diagram for mild steel with salient features.                                                |
| 7.  | Draw Stress-Strain diagram for Aluminum.                                                                        |
| 8.  | Define Nominal stress and True stress                                                                           |
| 9.  | Derive an expression for the elongation of a bar subjected to tensile load                                      |
| 10. | Show that the extension produced due to self weight of a bar of uniform cross section fixed at one end          |
|     | suspended vertically is equal to half the extension produced by a load equal to self weight applied at the free |
|     | end.                                                                                                            |
| 11  | Derive an expression for the extension of a restangular har which is having continuously varying cross          |

11. Derive an expression for the extension of a rectangular bar which is having continuously varying crosssection

























| A       |      | S J P N 🍄 ust's                                                                                                                        | Mech. Engg.                              |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|         |      | Hirasugar Institute of Technology, Nidasoshi.                                                                                          | Dept.                                    |
|         |      | Inculcating Values, Promoting Prosperity                                                                                               |                                          |
| (善)     | 1    | Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to<br>Visvesvarava Technological University - Belagavi. | in Gemester                              |
|         |      | Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE.           | 2023-24                                  |
|         | Wh   | at do you understand by circumferential and longitudinal stresses?                                                                     |                                          |
|         | Der  | rive the expressions for the change in the dimensions of a cylinder subjected to internal pr                                           | essure                                   |
|         | Der  | rive an expression for strain energy, when member subjected to impact loads.                                                           |                                          |
|         | Der  | rive an expression for circumferential stress of a thin cylinder.                                                                      |                                          |
|         | Det  | nne I) strain energy II) work.                                                                                                         |                                          |
|         | Pro  | we that volumetric strain in thin cylinder is given by $\frac{2}{4tE}(5-4\mu)$ , with usual notations.                                 |                                          |
|         | Cal  | culate the i) change in diameter; ii) change in length and iii) change in volume of a thin cyl                                         | inder shell 1000mm                       |
|         | dia  | meter, 10mm thick and 5m long when subjected to internal pressure of 3N/mm <sup>2</sup> . Take the                                     | e value of <b>E = 2 x 10<sup>5</sup></b> |
|         | N/r  | mm <sup>2</sup> and 1/m= 0.3.                                                                                                          |                                          |
| 34.     | Аp   | ressure vessel with outer and inner diameters of 400mm and 320mm respectively is subj                                                  | ected to an external                     |
|         | pre  | ssure of 80MPa. Determine the circumferential stress induced at the inner and outer surf                                               | aces. Prove that the                     |
| 25      |      | gitudinal strain is constant throughout the cylinder.                                                                                  | n ovtornal prossura                      |
| 55.     | of 4 | 400 mm m m m m m m m m m m m m m m m m m                                                                                               | sternal and internal                     |
|         | sur  | faces of the cylinder. Plot the variation of circumferential stress and radial pressure on t                                           | the thickness of the                     |
|         | cyli | inder.                                                                                                                                 |                                          |
| 36.     | A C  | C.I pipe has200mm internal diameter and 50mm metal thickness and carries water un                                                      | der a pressure of 5                      |
|         | N/r  | nm <sup>2</sup> . Calculate the maximumnand minmum intensities of circumferential stress and sket                                      | ch the disribution of                    |
|         | circ | cumferentialstress intensities and intensity of radial pressure across the section.                                                    |                                          |
| 37.     | Аp   | pipe of 400mm internal diameter and 100mm thickness contains a fluid at a pressure of                                                  | 80N/mm <sup>2</sup> .Find the            |
|         | ma   | ximum and minimum hoop stresses across the section. Also sketch radial and hoop s                                                      | tresses distribution                     |
| 20      | acr  | oss the section                                                                                                                        |                                          |
| 38.     | A ti | nin cylindrical snell 1.2m in diameter and 3m long has a metal wall thickness of 10mm.                                                 | vall determine the                       |
|         | cha  | $r_{\rm max}$ in length diameter the volume of the cylinder. Assume F=210Gna and u=0.3                                                 |                                          |
| 39.     | Ath  | hick cylinder with internal diameter 80mm and External diameter 1200pu did a 0.00                                                      | an external pressure                     |
|         | of   | 40Kn/m <sup>2</sup> , when the internal pressure is 120KN/m <sup>2</sup> .Calculate the circumferential stre                           | ess at external and                      |
|         | inte | ernal surface of the cylinder. Plot the variation of circumferential stress and radial pressu                                          | ire on the thickness                     |
|         | of t | he cylinder                                                                                                                            |                                          |
| 40.     | Ac   | ylindrical tube with closed ends has an internal diameter of 50mmand a wall thickness of                                               | 2.50mm.Yhe tube is                       |
|         | axia | ally loaded in tension with a load of 10KN and is subjected to an axial torque of 500NN                                                | A under an internal                      |
| /1      | pre  | issure of 6N/mm .Determine the principle stresses on outer surface of the tube and maxim                                               | num snear stress.                        |
| 41.     | atm  | pospheric pressure. If an additional 20000mm <sup>3</sup> of the fluid is pumped into the cylinde                                      | or find the pressure                     |
|         | exe  | erted by the fluid on the wall of the cylinder find also the hoop stress induced. Take                                                 | $F=2x10^5 N/mm^2$ and                    |
|         | 1/n  | n.=0.3.                                                                                                                                | -,                                       |
| 42.     | Ap   | pipe of 200mm internal diameter and 100mm thickness contains a fluid at a pressure o                                                   | of 6N/mm <sup>2</sup> .Find the          |
|         | ma   | ximum and minimum hoop stresses across the section.                                                                                    |                                          |
| 43.     | Fine | d the thickness of the metal necessary for a steel cylindrical shell of internal diameter 150                                          | Omm ton with stand                       |
|         | an i | internal pressure of 50N/mm <sup>2</sup> . The maximum hoop stress in the section is not to exceed 15                                  | 50N/mm².                                 |
| 44.     | A 1  | .2 meter long thin cylindrical pressure vessel of 500 mm inner diameter and 14 mm wall t                                               | hickness undergoes                       |
|         | a v  | olume change of 5x10 mm <sup>2</sup> , when it is subjected to an internal pressure 'p'. Taking E                                      | =210GPa and v=0.3                        |
| 1       | uet  | ermine the magnitude of P.                                                                                                             |                                          |
| 1.<br>2 | Der  | rive an expression for Euler's buckling load for a long column baying one and fixed and                                                | other end hinged                         |
| ۷.      | Stat | te the assumption made in the derivation                                                                                               | a other end ninged.                      |
| 3.      | Def  | fine slenderness ratio and derive Euler's expression for bucking load for column with both                                             | ends hinged                              |
| 4.      | A h  | follow shaft of diameter ratio 3/8 is required to transmit 588KWatt 110 rpm. the max                                                   | imum torque being                        |
|         | 120  | 0% of the mean. Shear stress is not to exceed 63 N/mm <sup>2</sup> and twist in length of 3 m not to                                   | exceed 1.4 degrees.                      |
|         | 120  | 0% of the mean. Shear stress is not to exceed 63 N/mm <sup>2</sup> and twist in length of 3 m not to                                   | exceed 1.4 degrees.                      |

| <u></u>         | S J P N2Oust's                                                                                                                                                                                                                                             | Mech. Engg.                                   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| A DE CONTRACTOR | Hirasugar Institute of Technology, Nidasoshi.                                                                                                                                                                                                              | Dept.                                         |
|                 | Inculcating Values, Promoting Prosperity                                                                                                                                                                                                                   | III <sup>rd</sup> Somester                    |
|                 | Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to                                                                                                                                                                          | in Semester                                   |
| ESTD J 1996     | Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE.                                                                                                                               | 2023-24                                       |
| (               | Calculate external iameter of shaft which would satishfy theseconditions. Take modulys of right respectively ${\sf right optimized}$                                                                                                                       | gidity = 84GPa.                               |
| 5. /            | A hollow shaft having an inside diameter 60% of its outer diameter, is to replace a solid sh<br>name power at the same speed. Calculate the percentage saving in material, if the material to<br>name.                                                     | aft transmitting the<br>o be used is also the |
| 6. /            | A hollow C.I. column whose outside diameter is 200mm has a thickness of 20mm. it is 4.5m                                                                                                                                                                   | long and is fixed at                          |
|                 | both ends. Calculate the safe load by Rankine's formula using a factor of safety of 4. Calcul ratio and the ratio of Euler's and Rankine's critical loads. Take $f_c = 550N/mm^2$ , $a = 1/1600$                                                           | ate the slenderness<br>in Rankin's formula    |
| i               | and $E = 9.4 \times 10^2$ .                                                                                                                                                                                                                                |                                               |
| 7. F            | nd the Euler's clipping load a hallow cylindrical steel column of 38mm external diameter and<br>ength of column as 2.3m and hinged at its both ends. Take E=2.05x105N/mm2.Also determir<br>oads by Rankin's formula using constants as 335N/mm2 and 1/7500 | l 2.5mm thick .Take<br>ne the crippling       |
| 8. A            | 1.5m long column has a circular cross section of 50mm diameter .One of ends of a column fi                                                                                                                                                                 | xed in direction                              |
| 1               | and position and other end is free .Taker factor of safety as 3,calculate safe loading using i)Ra<br>ake yield stress=560N/mm2 and a=1/1600 for pinned end ii) Euler's formula ,Young's modu<br>N/mm2                                                      | ankin's formula ,<br>lus for C.I=1.2x105      |
| 9. D            | erive an expression for the critical load in a column subjected to compression load, when one obther end free.                                                                                                                                             | end is fixed and the                          |
| 10. D           | erive an expression for the critical load in a column subjected to compression load, when on<br>he other end free.                                                                                                                                         | e end is fixed and                            |
| 11. D           | erive an expression for strain energy due to shear stresses                                                                                                                                                                                                |                                               |
| 12. \           | Vrite a note on: (i) Maximum principal stress theory. (ii) Maximum shear stress theory                                                                                                                                                                     |                                               |
| 13. /           | A hollow circular shaft 2 m long is required to transmit 1000 KW power, when running at a s<br>he outer diameter of the shaft is 150 mm and inner diameter is 120 mm. find the maximu<br>strain energy stored in the shaft.                                | speed of 300 rpm. If<br>um shear stress and   |
| 14. /           | A solid circular shaft is subjected to a bending moment of 40 KN-m and a torque of 10KN-m.<br>of the shaft according to, (i) Maximum principal stress theory. (ii) Maximum shear stress theory and FOS=2.                                                  | design the diameter<br>heory. Take μ=0.25,    |
| 15. [           | Derive one expression for strain energy stored in an elastic bar when subjected to axial load, noment.                                                                                                                                                     | torque and bending                            |
| 16.             | The maximum stress produced by a pull in a bar of length 1100 mm is 100 N/mm <sup>2</sup> . The area ength are shown in fig. calculate the total strain energy stored in the bar if E= 200GPa.                                                             | of cross-section and                          |
| 17. [           | Define strain energy, Resilience, proof resilience and Modulus of resilience.                                                                                                                                                                              |                                               |
| 18. /           | A cantilever beam of length 'L' carries UDL 'W' per unit length over its entire length. Determ<br>stored in beam (ii) If 'W'= 10KN/m; L=2m &EI =2X 10 <sup>5</sup> KN -mm <sup>2</sup> determine strain energy.                                            | ine (i) strain energy                         |

### 16.0 University Result

| Examination                | Number of<br>Students<br>Appeared | Number of<br>Students<br>Appeared | FCD | FC | PC | Fail | % Passing |
|----------------------------|-----------------------------------|-----------------------------------|-----|----|----|------|-----------|
| Jan-Feb-20-21(2018 Scheme) | 25                                | 17                                | 1   | 2  | 6  | 08   | 68.00%    |

| Prepared & Checked by | 0   |           |
|-----------------------|-----|-----------|
| Ø                     | ast | Sex       |
| Prof. D.N.Inamdar     | НОД | Principal |



### s J P N2tust's Hirasugar Institute of Technology, Nidasoshi.

Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to Visvesvaraya Technological University - Belagavi. Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC and Programmes Accredited by NBA:CSE and ECE.

III<sup>rd</sup> Semester 2023-24

| Subject Title                            | Manufacturing Process |            |    |
|------------------------------------------|-----------------------|------------|----|
| Subject Code                             | BME302                | IA Marks   | 50 |
| No of Lecture Hrs + Practical Hrs / Week | 03+2                  | Exam Marks | 50 |
| Total No of Lecture + Practical Hrs      | 40+10                 | Exam Hours | 03 |
| CREDITS – 04                             |                       |            |    |

| FACULTY DETAILS:                    |                              |                                         |
|-------------------------------------|------------------------------|-----------------------------------------|
| Name: Mr. : Girish Zulapi           | Designation: Asst. Professor | Experience: 16 Years                    |
| No. of times course taught: 00 Time | Specializa                   | ation: Product Design and Manufacturing |

### 1.0 Prerequisite Subjects:

| Sl. No | Branch                 | Semester | Subject                            |
|--------|------------------------|----------|------------------------------------|
| 1      | Mechanical Engineering | I / II   | Elements of Mechanical Engineering |

### 2.0 Course Objectives

- To provide knowledge of various casting process in manufacturing.
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys, also to provide detailed information about the moulding processes.
- To acquaint with the basic knowledge on fundamentals of metal forming processes and also to study various metal forming processes.
- To impart knowledge of various joining process used in manufacturing.
- To impart knowledge about behaviour of materials during welding, and the effect of process parameters in welding.

### **3.0 Course Outcomes**

The student, after successful completion of the course, will be able to

| СО     | Course Outcome                                                                                                                     | Cognitive<br>Level | POs          |
|--------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| C202.1 | Classify manufacturing process and elaborate the parts of casting process.                                                         | U                  | 1,6,12       |
| C202.2 | Summarize the different casting process and select the melting furnace based on ferrous and non-ferrous alloys.                    | U                  | 1,6,12       |
| C202.3 | Understand the classification of various forming process like forging, rolling, extrusion, wire drawing and sheet metal processes. | U                  | 1,2,5,6,12   |
| C202.4 | List and explain different types of conventional welding processes like Arc and Gas welding processes                              | U                  | 1,2,3,6,12   |
| C202.5 | Explain different special types of advance welding processes, soldering, brazing and adhesive bonding.                             | U                  | 1,2,3,5,6,12 |
|        | Total Hours of instruction                                                                                                         |                    | 40           |

|     | SJPN22ust's<br>Hiracugar Instituto of Tachnology, Nidacoshi                                                                                                                       | Mech. Engg.<br>Dept.       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     | nilasugai institute of reciniology, Nilasosin.                                                                                                                                    | Course Plan                |
|     | Inculcating Values, Promoting Prosperity<br>Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to                                                     | III <sup>rd</sup> Semester |
|     | Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. | 2023-24                    |
| 4.0 | Course Content                                                                                                                                                                    |                            |

MODULE -1

#### INTRODUCTION & BASIC MATERIALS USED IN FOUNDRY

Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy. Introduction to casting process & steps involved– (Brief Introduction)-Not for SEE

Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance.

Sand molding: Types of base sand, requirement of base sand. Binder, Additives definition, need and types ,Preparation of sand molds: Molding machines- Jolt type, squeeze type and Sand slinger.

Study of important molding process: Green sand, core sand, dry sand, sweep mold, CO2 mould, shell mould, investment mould, plaster mould, cement bonded mould.

Cores: Definition, need, types. Method of making cores.

Concept of gating (top, bottom, parting line, horn gate) and risers (open, blind) Functions and types.

**08 Hours** 

#### MODULE -2

#### MELTING FURNACES AND METAL MOLD CASTING METHODS

Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace.

Casting using metal molds:Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting,<br/>thixocasting, and continuous casting processes.Casting defects, their causes and remedies.08 Hours

#### **MODULE -3**

#### METAL FORMING PROCESSES

**Introduction of metal forming process**: Mechanical behavior of metals in elastic and plastic deformation, stress-strain relationships, Yield criteria, Application to tensile testing, train rate and temperature in metal working; Hot deformation, Cold working and annealing.

**Metal Working Processes**: Fundamentals of metal working, Analysis of bulk forming processes like forging, rolling, extrusion, wire drawing by slab method,

Other sheet metal processes: Sheet metal forming processes (Die and punch assembly, Blanking, piercing,<br/>bending etc., Compound and Progressive die), High Energy rate forming processes.08Hours

#### **MODULE -4**

#### JOINING PROCESSES

**Operating principle, basic equipment, merits and applications of**: Fusion welding processes: Gas welding - Types -Flame characteristics; Manual metal arc welding - Gas Tungsten arc welding - Gas metal arc welding - Submerged arc welding. **08 Hours** 

#### **MODULE -5**

**Weldability and thermal aspects**: Concept of weldability of materials; Thermal Effects in Welding (Distortion, shrinkage and residual stresses in welded structures); Welding defects and remedies.

Allied processes: Soldering, Brazing and adhesive bonding

Advance welding processes: Resistance welding processes, friction stir welding (FSW).

**08 Hours** 

#### PRACTICAL COMPONENT OF IPCC

Course objectives:

- Impart fundamental understanding of various casting, welding and forming processes
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys
- Discuss design methodology and process parameters involve in obtaining defect free component

|         | S J P N2Bust's                                                                                                                                                                    | Mech. Engg.<br>Dent        |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| A A A A | Hirasugar Institute of Technology, Nidasoshi.                                                                                                                                     | Course Plan                |  |  |  |
|         | Inculcating Values, Promoting Prosperity                                                                                                                                          | III <sup>rd</sup> Semester |  |  |  |
|         | Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. | 2023-24                    |  |  |  |
| SI.NO   | Experiments                                                                                                                                                                       |                            |  |  |  |
| 1       | Preparation of sand specimens and conduction of the following tests:                                                                                                              |                            |  |  |  |
|         | Compression, Shear and Tensile tests on Universal Sand Testing Machine.                                                                                                           |                            |  |  |  |
| 2       | To determine permeability number of green sand, core sand and raw sand.                                                                                                           |                            |  |  |  |
| 3       | To determine AFS fineness no. and distribution coefficient of given sand sampl.                                                                                                   |                            |  |  |  |
| 4       | Studying the effect of the clay and moisture content on sand mould properties.                                                                                                    |                            |  |  |  |
| 5       | Use of Arc welding tools and welding equipment Preparation of welded joints using Arc V                                                                                           | Velding equipment          |  |  |  |
|         | L-Joint, T-Joint, Butt joint, V-Joint, Lap joints on M.S. flats                                                                                                                   |                            |  |  |  |
| 6       | Foundry Practice:                                                                                                                                                                 |                            |  |  |  |
|         | Use of foundry tools and other equipment for Preparation of molding sand mixture. Preparation of green sand                                                                       |                            |  |  |  |
|         | molds kept ready for pouring in the following cases:                                                                                                                              |                            |  |  |  |
|         | 1. Using two molding boxes (hand cut molds).                                                                                                                                      |                            |  |  |  |
|         | 2. Using patterns (Single piece pattern and Split pattern).                                                                                                                       |                            |  |  |  |
| 7       | Preparation of green sand molds kept ready for pouring in the following cases:                                                                                                    |                            |  |  |  |
|         | Incorporating core in the mold. (Core boxes).                                                                                                                                     |                            |  |  |  |
| 8       | Forging Operations: Use of forging tools and other forging equipment.                                                                                                             |                            |  |  |  |
|         | Preparing minimum three forged models involving upsetting, drawing and bending operations.                                                                                        |                            |  |  |  |
|         | Demo experiments for CIE                                                                                                                                                          |                            |  |  |  |
| 9       | Demonstration of forging model using Power Hammer.                                                                                                                                |                            |  |  |  |
| 10      | To study the defects of Cast and Welded components using Non-destructive tests like:                                                                                              |                            |  |  |  |
|         | a) Ultrasonic flaw detection b) Magnetic crack detection c) Dye penetration testing                                                                                               |                            |  |  |  |
| 11      | Mould preparation of varieties of patterns, including demonstration                                                                                                               |                            |  |  |  |
| 12      | Demonstration of material flow and solidification simulation using Auto-Cast software                                                                                             |                            |  |  |  |

### **5.0** Relevance to future subjects/Area

| SL. No | Semester | Subject       |         |     | Topics / Relevance |
|--------|----------|---------------|---------|-----|--------------------|
| 01     | IV       | Machining     | Science | And | Industry           |
|        |          | Metrology (IP | CC)     |     |                    |

### 6.0 Relevance to Real World

| SL. No | Real World Mapping                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 01     | Casting Processes and testing                                                                                                           |
| 02     | Melting Furnaces                                                                                                                        |
| 03     | Metal joining Techniques and Testing                                                                                                    |
| 04     | Production of different metallic components by forming the metal in different shape and size with the application of different methods. |

### 7.0 Books Used and Recommended to Students

#### Books

- 1. Ghosh, A. and Mallik, A. K., (2017), Manufacturing Science, East-West Press.
- 2. Parmar R. S., (2007), Welding Processes and Technology, Khanna Publishers.
- Little R. L. 'Welding and Welding Technology' Tata McGraw Hill Publishing Company Limited, New Delhi 1989
- 4. Grong O. 'Metallurgical Modelling of Welding' The Institute of Materials 1997 2nd Edition

| A DECEMBER OF                                                                                                   | SJPN2#ust's<br>Hiracugar Institute of Tachnology Nidacoshi                                                                                                                        | Mech. Engg.<br>Dept.       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| TOO A                                                                                                           | nilasugai institute of reciniology, Nilasosin.                                                                                                                                    | Course Plan                |  |  |  |
| No Bert                                                                                                         | Inculcating Values, Promoting Prosperity<br>Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to                                                     | III <sup>rd</sup> Semester |  |  |  |
| EXID OF 1990                                                                                                    | Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. | 2023-24                    |  |  |  |
| 5. Kou S. – 'Welding Metallurgy' – John Wiley Publications, New York – 2003 – 2nd Edition.                      |                                                                                                                                                                                   |                            |  |  |  |
| 6. Serope Kalpakjian and Steven R. Schmid – 'Manufacturing Engineering and Technology' – Prentice Hall – 2013 – |                                                                                                                                                                                   |                            |  |  |  |
| 7thEdition                                                                                                      |                                                                                                                                                                                   |                            |  |  |  |

- 7. Principles of foundry technology, 4th edition, P L Jain, Tata McGraw Hill, 2006.
- 8. Advanced Welding Processes technology and process control, John Norrish, Wood Head Publishing, 2006.

#### Additional Study Material and e-Books

1Nptel.ac.in, 2 VTU, E- learning, 3 MOOCS, 4 Open courseware

# 8.0 Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

Website and Internet Contents References

### 9.0 Magazines/Journals Used and Recommended to Students

| Sl.No | Magazines/Journals                        | website                                  |
|-------|-------------------------------------------|------------------------------------------|
| 1     | Global Casting Magazines                  | http://www.globalcastingmagazine.com/    |
| 2     | Science Direct                            | http://www.sciencedirect.com             |
| 3     | Metal Forming Magazine                    | http://www.metalformingmagazine.com/home |
| 4     | International Journal of Material Forming | https://link.springer.com/journal/12289  |
| 10.0  | Eveningtion Note                          |                                          |

#### **10.0** Examination Note

- 1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be reduced proportionally to 50 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

#### Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks)**.
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

#### CIE for the practical component of the IPCC

• **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions.

| <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S J P N2Trust's                                                                                                               | Mech. Engg.                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| A REAL PROPERTY AND A REAL | Hirasugar Institute of Technology, Nidasoshi                                                                                  | Dept.                      |
| 1 DOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | Course Plan                |
| No Bert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Incurcating Values, Promoting Prosperity<br>Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to | III <sup>rd</sup> Semester |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Visvesvaraya Technological University - Belagavi.                                                                             |                            |
| INTE 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC                                                   | 2023-24                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Programmes Accredited by NBA:CSE and ECE.                                                                                 |                            |

- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

#### SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from eachmodule.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

#### Lecture **Content of Lecturer** % of Portion Module No. 1 Definition, Classification of manufacturing processes. Metals cast in the foundry-classification Factors that determine the selection of a casting alloy.Introduction to casting 2 process & steps involved- (Brief Introduction)-Not for SEE. Patterns: Definition, classification, materials used for pattern, various pattern 3 allowances and their importance. Sand molding: Types of base sand, requirement of base sand. Binder, Additives 4 definition, need and types. 20% 1 Preparation of sand molds: Molding machines- Jolt type, squeeze type and Sand 5 slinger. Study of important molding process: Green sand, core sand, 6 Dry sand, sweep mold, CO2 mold, shell mold, investment mold, plaster mold, 7 cement bonded mold ... 8 Cores: Definition, need, types. Method of making cores, concept of gating (top, bottom, parting line, horn gate) 9 Risering (open, blind) Functions and types 10 Melting furnaces: Classification of furnaces, 11 Gas fired pit furnace, Resistance furnace, 12 2 40% Coreless induction furnace, electric arc furnace, 13 Constructional features & working principle of cupola furnace. 14

## 11.0 Course Delivery Plan

| 4            |                                                   | S J P N2Gust's                                                                                                   | Mech. Engg. |  |  |  |
|--------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| A ROOM       | Hirasugar Institute of Technology, Nidasoshi.     |                                                                                                                  |             |  |  |  |
|              | Inculcating Values, Promoting Prosperity          |                                                                                                                  |             |  |  |  |
|              | Visvesvaraya Technological University - Belagavi. |                                                                                                                  |             |  |  |  |
| ENTR () some | Recognized                                        | l under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC and Programmes Accredited by NBA:CSE and ECE. | 2023-24     |  |  |  |
|              | 15                                                | Casting using metal molds: Gravity die casting,                                                                  |             |  |  |  |
|              | 16                                                | Pressure die casting,                                                                                            |             |  |  |  |
|              | 17                                                | Centrifugal casting,                                                                                             |             |  |  |  |
|              | 18                                                | Squeeze casting,                                                                                                 |             |  |  |  |
|              | 19                                                | Slush casting,                                                                                                   |             |  |  |  |
|              | 20                                                | Thixocasting and continuous casting processes                                                                    |             |  |  |  |
|              | 21                                                | Casting defects, their causes and remedies                                                                       |             |  |  |  |
|              | 22                                                | Introduction of metal forming process: Mechanical behaviour of metals in elastic and plastic                     |             |  |  |  |
|              | 23                                                | deformation, stress-strain relationships, Yield criteria                                                         |             |  |  |  |
|              | 24                                                | Application to tensile testing, train rate and temperature in metal working                                      |             |  |  |  |
|              | 25                                                | Hot deformation, Cold working and annealing.                                                                     |             |  |  |  |
|              | 26                                                | Metal Working Processes: Fundamentals of metal working, Analysis of                                              | f (00/      |  |  |  |
| 3            |                                                   | bulk forming processes like forging,                                                                             | 60%         |  |  |  |
|              | 27                                                | Rolling, extrusion, wire drawing by slab method,                                                                 |             |  |  |  |
|              | 28                                                | Other sheet metal processes: Sheet metal forming processes (Die and punch assembly,                              |             |  |  |  |
|              | 29                                                | Blanking, piercing, bending etc.,                                                                                |             |  |  |  |
|              | 30                                                | Compound and Progressive die), High Energy rate forming processes                                                |             |  |  |  |
|              | 31                                                | Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types  |             |  |  |  |
|              | 32                                                | Flame characteristics; Manual metal arc welding                                                                  | 800/        |  |  |  |
| 4            | 33                                                | Gas Tungsten arc welding                                                                                         | 80%         |  |  |  |
|              | 34                                                | Gas metal arc welding                                                                                            |             |  |  |  |
|              | 35                                                | Submerged Arc Welding (SAW)                                                                                      |             |  |  |  |
|              | 36                                                | Weldability and thermal aspects: Concept of weldability of materials                                             |             |  |  |  |
|              | 37                                                | Thermal Effects in Welding (Distortion, shrinkageand residual stresses in welded structures);                    |             |  |  |  |
| 5            | 38                                                | Welding defects and remedies.                                                                                    |             |  |  |  |
|              | 39                                                | Allied processes: Soldering, Brazing and adhesive bonding                                                        | 1000/       |  |  |  |
|              | 40                                                | Advance welding processes: Resistance welding processes                                                          | 100%        |  |  |  |
|              | 41                                                | Friction stir welding (FSW).                                                                                     |             |  |  |  |

## 12.0 Assignments, Pop Quiz, Mini Project, Seminars

| Sl.No. | Title                                    | Outcome expected                                                                                         | Allied<br>study      | We<br>ek<br>No. | Individual /<br>Group activity                         | Reference:<br>book/website<br>/Paper    |
|--------|------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------------------------------------|-----------------------------------------|
| 1      | Assignment 1:<br>University<br>Questions | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions. | Module 1<br>syllabus | 3               | Individual Activity<br>and submission of<br>hard copy. | Book 1 and all<br>the reference<br>book |
| 2      | Assignment 2:<br>University<br>Questions | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university               | Module 2<br>syllabus | 6               | Individual Activity<br>and submission of<br>hard copy. | Book 1 and all<br>the reference<br>book |

|        | Hirocua                                                                                                                                                                           | lacashi                                                                                                  | Mech. Engg.<br>Dept. |    |                                                        |                                         |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|----|--------------------------------------------------------|-----------------------------------------|--|--|
| 1 DOON | ппазив                                                                                                                                                                            |                                                                                                          | Course Plan          |    |                                                        |                                         |  |  |
| NO DON | Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to                                                                                                 |                                                                                                          |                      |    |                                                        |                                         |  |  |
|        | Visvesvaraya Technological University - Belagavi.<br>Recognized under 2(f) &12B of UGC Act, 1956.Accredited at 'A' Grade by NAAC<br>and Programmes Accredited by NBA:CSE and ECE. |                                                                                                          |                      |    |                                                        |                                         |  |  |
|        |                                                                                                                                                                                   | questions.                                                                                               |                      |    |                                                        |                                         |  |  |
| 3      | Assignment 3:<br>University<br>Questions                                                                                                                                          | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions. | Module 3<br>syllabus | 9  | Individual Activity<br>and submission of<br>hard copy. | Book 1 and all<br>the reference<br>book |  |  |
| 4      | Assignment 4:<br>University<br>Questions                                                                                                                                          | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions. | Module 4<br>syllabus | 12 | Individual Activity<br>and submission of<br>hard copy. | Book 1 and all<br>the reference<br>book |  |  |
| 5      | Assignment 5:<br>University<br>Questions                                                                                                                                          | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions. | Module 5<br>syllabus | 15 | Individual Activity<br>and submission of<br>hard copy. | Book 1 and all<br>the reference<br>book |  |  |

| 13.0      | QUESTION BANK                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| Sample    | Questions                                                                                                       |
| Questions | NODULE 1                                                                                                        |
|           | MODULE I                                                                                                        |
|           | 1. Define manufacturing and explain the classification of manufacturing processes.                              |
|           | 2. Define casting. Enumerate different steps involved in producing a component by                               |
|           | 3 Define Pattern and explain the various pattern allowances                                                     |
|           | 4. What are the common materials used for pattern making? Discuss their relative merits                         |
|           | and demerits.                                                                                                   |
|           | 5. Explain match plate pattern with sketch.                                                                     |
| T         | 6. Explain with neat sketch sand slinger machine.                                                               |
| I         | 7. Explain with neat sketch Jolt machine.                                                                       |
|           | 8. Explain with neat sketch Squeeze machine.                                                                    |
|           | 9. Draw gating system and show all the elements.                                                                |
|           | 10. Explain cement bonded mould.                                                                                |
|           | 11. Explain with neat sketch shell moulding process.                                                            |
|           | 12. Explain with neat sketch $CO_2$ moulding process.                                                           |
|           | 13. Explain with neat sketch sweep moulding process.                                                            |
|           | 14. Explain method of core making.                                                                              |
|           | 15. Discuss functions and types of gating system.                                                               |
|           | 16. Explain with neat sketches Open Riser and Blind Riser.                                                      |
|           | MODULE 2                                                                                                        |
|           | 2. What are the different types of crucible furnaces? With a sketch explain the principle of operation of a gas |
|           | fired pit furnace.                                                                                              |
|           | 3. Explain with neat sketch the operation of a high frequency induction furnace.                                |
| п         | 4. What are the differences between core type and coreless type induction furnaces?                             |
|           | 5. Explain with neat sketch the operation of an indirect arc furnace. How does it differ from a direct arc      |
|           | furnace?                                                                                                        |
|           | 6. Explain with neat sketch Cupola furnace Mark the different zones clearly and discuss the importance of       |
|           | each zone.                                                                                                      |
|           | 7. Explain with neat sketch Hot chamber pressure die casting process.                                           |
|           | Explain with neat sketch Casting defects                                                                        |

| <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S J P N278ust's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mech. Engg.                |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| A State of the sta | Hirasugar Institute of Technology, Nidasoshi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dept.<br>Course Plan       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt, of Karnataka and Permanently Affiliated to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III <sup>rd</sup> Semester |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Visvesvaraya Technological University - Belagavi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |  |  |  |  |  |  |
| ENTE () some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and Programmes Accredited by NBA:CSE and ECE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2023-24                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODULE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Explain the following Yield Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a) Tresca's Yield Criterion b) von Mises Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Explain temperature in metal forming and write the comparison between hot working and cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Derive the expression for forging by slab method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |  |  |  |  |
| тт                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. Derive the expression for rolling load by slab method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |  |  |  |  |  |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. Derive the expression for extrusion by slab method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Derive the expression for wire drawing load by slab method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Explain the various dies and punches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. Explain with neat sketch sheet metal forming process like blanking, Piercing and bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. Explain with neat sketch compound and progressive die.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. Explain with neat sketches the following High Energy rate forming processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11. a) Explosive Forming b) Electro-hydraulic forming c) Electro-magnetic form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ning                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODULE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Explain with a neat sketch oxy-acetylene welding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |  |  |  |  |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Explain types of flame characteristics in oxy-acetylene welding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |  |  |  |
| IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5. what is the working principle of arc welding?<br>4. Explain with a peat sketch the MMAW welding process along with its advantages and limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>4. Explain with a near sketch the MIG welding process along with its advantages and limitations.</li> <li>5. Explain with a near sketch the MIG welding process along with its advantages and limitations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Explain with a neat sketch the TIG welding process along with its advantages an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d limitations.             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Explain with a neat sketch the SAW welding process along with its advantages a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and limitations.           |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODULE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Define weldability and briefly explain the factors that affect the weldability of materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>Explain Distortion, shrinkageand residual stresses in welded structures.</li> <li>Explain with neat sketches welding defects and remedies.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |  |  |  |  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. Differentiate between soldering and brazing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |  |  |  |  |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. Explain with neat sketch Resistance spot welding process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Explain with neat sketch Resistance seam welding process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Explain with neat sketch Resistance butt welding process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8. Explain with neat sketch Resistance projection welding process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$ |                            |  |  |  |  |  |  |

## 14.0 University Result

| Examination | S+ | S | А | В | С | D | E | % Passing   |
|-------------|----|---|---|---|---|---|---|-------------|
|             |    |   |   |   |   |   |   | New subject |

| Prepared by         | Checked by          | 0   | 0        |  |
|---------------------|---------------------|-----|----------|--|
| Thereby             | Xen                 | Opt | Sex      |  |
| Prof. Girish Zulapi | Prof. M A Hipparagi | НОР | Dringing |  |
| Faculty             | Module coordinator  | nob | 1 meipai |  |
| A CONTRACTOR DE CONTRACTOR |  |
|----------------------------|--|
|                            |  |
|                            |  |

#### S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

| Subject Title                          | MATERIAL SCIENCE & ENGINEERING   |            |    |
|----------------------------------------|----------------------------------|------------|----|
| Course Code                            | BME303                           | CIE Marks  | 50 |
| Number of Lecture Hrs / Week(L:T:P: S) | 3:0:2:0                          | SEE Marks  | 50 |
| Total Number of Lecture Hrs            | 40 hours Theory + 8-10 Lab slots | Exam Hours | 03 |
| CREDITS – 04                           |                                  |            |    |

| FACULTY DETAILS:             |                              |                     |
|------------------------------|------------------------------|---------------------|
| Name: Prof. P.M.Kokitakar    | Designation: Asst .Professor | Experience: 5 Years |
| No. of times course taught:1 | Specializat                  | ion: Machine Design |

| 1.0    | Prerequisite | Subjects:      |                                                     |
|--------|--------------|----------------|-----------------------------------------------------|
| Sl. No | Branch       | Semester       | Subject                                             |
| 01     | High School  | 8, 9,10th Std. | Physics, Chemistry                                  |
| 02     | PU Science   | I and II year  | Atomic Physics, Physical Chemistry. Periodic Tables |

#### 2.0 **Course Objectives**

- CLO1: Explain the basic concepts of geometrical crystallography, crystal structure and imperfections in Solids.
- CLO2: Construct the phase diagrams to know the phase transformations and concept of diffusion in solids.
- CLO3: Identify the heat treatment, cooling method for controlling the microstructure and plastic deformation to modify their properties.
- CLO4: Explain the powder metallurgy process, types and surface modifications.

CLO5: Apply the method of materials selection, material data, properties and knowledge sources for computer-aided selection of materials.

#### 3.0 **Course Outcomes**

At the end of the course the student will be able to:

|        | Course Outcome                                                                                                                              | Cognitive<br>Level | Pos                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|
| C203.1 | Understand the atomic arrangement in crystalline materials and describe the periodic arrangement of atoms in terms of unit cell parameters. | U                  | PO1,<br>PO2,<br>,PO7,<br>PO5, |
| C203.2 | Understand the importance of phase diagrams and the phase transformations.                                                                  | U                  | PO1, PO2,<br>,PO7,<br>PO5,    |
| C203.3 | Explain various heat treatment methods for controlling the microstructure.                                                                  | U                  | PO1, PO2,<br>,PO7,<br>PO5,    |
| C203.4 | Correlate between material properties with component design and identify various kinds of defects.                                          | U                  | PO1, PO2,<br>,PO7,<br>PO5     |
| C203.5 | Apply the method of materials selection, material data and knowledge sources for computer-aided selection of materials.                     | U                  | PO1, PO2,<br>,PO7,<br>PO5.    |
|        | 40                                                                                                                                          |                    |                               |



Imperfections in Solids: Types of imperfections, Point defects: vacancies, interstitials, line defects, 2-D and 3D-defects, Concept of free volume in amorphous solids. Slip, Twinning.

#### **MODULE-2**

#### **Physical Metallurgy**

**Structure of Materials** 

**Course Content** 

Alloy Systems: Classification of Solid solutions, Hume- Rothery Rules

Diffusion: Diffusion Mechanisms: Vacancy Diffusion and Interstitial Diffusion, Fick's laws of diffusion, Factors affecting diffusion.

Phase Diagrams: Gibbs Phase Rule, Solubility limit, phase equilibrium and Phase Diagrams: Isomorphous systems, Invariant Binary Reactions: Eutectic reaction, Eutectoid reaction and Peritectic reaction, Lever Rule, Iron-Carbon Diagram. Effect of common alloying elements in steel. Numerical on Lever rule.

#### **MODULE-3**

Nucleation and growth: Introduction to homogeneous and heterogeneous nucleation, critical radius for nucleation.

Heat treatment: Annealing, Normalizing, hardening, Tempering, Nitriding, Cyaniding, Induction Hardening and Flame Hardening, Recent advances in heat treat technology. TTT diagram, Recovery-Recrystallization-Grain Growth. Strengthening mechanisms: Strain hardening, Precipitation hardening (Solid-Solution Strengthening), Grain refinement.

#### **MODULE-4**

**Surface coating technologies:** Introduction, coating materials, coating technologies, types of coating: Electro-plating, Chemical Vapor Deposition(CVD), Physical Vapor Deposition(PVD), High Velocity Oxy-Fuel Coating, advantages and disadvantages of surface coating.

**Powder metallurgy:** Introduction, Powder Production Techniques: Different Mechanical methods: Chopping or Cutting, Abrasion methods, Machining methods, Ball Milling and Chemical method: Chemical reduction method.

Characterization of powders (Particle Size & Shape Distribution), Powder Shaping: Particle Packing Modifications, Lubricants & Binders, Powder Compaction & Process, Sintering and Application of Powder Metallurgy.

#### MODULE 5

Engineering Materials and Their Properties: Classification, Ferrous materials: Properties, Compositions and uses of Grey cast iron and steel. Non-Ferrous materials: Properties, Compositions and uses of Copper, Brass, Bronze.

Composite materials - Definition, classification, types of matrix materials & reinforcements, Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiber- reinforced composites, Applications of composite materials. Mechanical and functional properties of Engineering Materials

The Design Process and Materials Data: Types of design, design tools and materials data, processes of obtaining materials data, materials databases.

## Introduction: Classification of materials, crystalline and non-crystalline solids, atomic bonding: Ionic

S J P N Trust's

Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

## 8 HOURS

#### 8 HOURS

8 HOURS

#### Page | 30

#### Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi **Course Plan** Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. III SEM



**MODULE-1** 

4.0

#### **8 HOURS**

8 HOURS



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
|                                                                                     | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

Material Selection Charts: Selection criteria for materials, material property Charts, deriving property limits and material indices.

## 5.0 Relevance to future subjects

| Sl<br>No | Semester | Subject                            | Topics                                                                                            |
|----------|----------|------------------------------------|---------------------------------------------------------------------------------------------------|
| 01       | V/VI     | Design of Machine Elements<br>I/II | Material Selection for Design of Joints,<br>Threaded Fasteners and Automotive drive<br>Mechanisms |
| 02       | VIII     | Project work                       | Knowledge of metallurgy of engineering materials to be used in fabrication projects under taken   |

## 6.0 Relevance to Real World

| SL. No | Real World Mapping                                                                          |  |  |
|--------|---------------------------------------------------------------------------------------------|--|--|
| 01     | Engineering materials used in Aerospace Industries, Automotive Industries,                  |  |  |
| 01     | Manufacturing industries of machine tools and SPMs etc.                                     |  |  |
| 02     | Study of surface characterization of materials to improve mechanical properties as research |  |  |
|        | and development projects.                                                                   |  |  |

## 7.0 Gap Analysis and Mitigation

| Sl. No | Delivery Type | Details                                                                                                                                    |
|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 01     | Tutorial      | Online videos/animated videos, PPTs on the topics as and when required to students                                                         |
| 02     | NPTEL         | Videos of Material Science and Metallurgy and Recent advancement in materials such as smart materials and biomedical application materials |

#### 8.0 Books Used and Recommended to Students

#### **Text Books**

- 1. Callister Jr, W.D., Rethwisch, D.G., (2018), Materials Science and Engineering: An Introduction, 10th Edition, Hoboken, NJ: Wiley.
- 2. Ashby, M.F. (2010), Materials Selection in Mechanical Design, 4th Edition, Butterworth-Heinemann.
- 3. Azaroff, L.V., (2001) Introduction to solids, 1st Edition, McGraw Hill Book Company.
- 4. Avner, S.H., (2017), Introduction to Physical Metallurgy, 2nd Edition, McGraw Hill Education.

#### **Reference Books**

- 1. Jones, D.R.H., and Ashby, M.F., (2011), Engineering Materials 1: An Introduction to Properties, Application and Design, 4th Edition, Butterworth-Heinemann.
- 2. Jones, D.R.H., and Ashby, M.F., (2012), Engineering Materials 2: An Introduction to Microstructure and Processing, 4th Edition, Butterworth-Heinemann.
- 3. Abbaschian, R., Abbaschian, L., Reed-Hill, R. E., (2009), Physical Metallurgy Principles, 4th Edition, Cengate Learning.
- 4. P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology and Applications, PHI, New Delhi,2008.

#### Web links and Video Lectures (e-Resources):

1. Prasad, R., Introduction to Materials Science and Engineering, NPTEL Course Material, Department



of Materials Science and Engineering, Indian Institute of Technology Delhi, <u>http://nptel.ac.in/courses/113102080/</u>

- Bhattacharya, B., Materials Selection and Design, NPTEL Course Material, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, <u>http://nptel.ac.in/courses/112104122/</u>
- 3. Subramaniam, A., Structure of Materials, NPTEL Course Material, Department of Material Science and Engineering, Indian Institute of Technology Kanpur, <u>https://nptel.ac.in/courses/113104014/</u>
- 4. Ghosh, R.N., Principles of Physical Metallurgy, IIT Kharagpur, http://nptel.ac.in/syllabus/113105024/

# 9.0 Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

#### Website and Internet Contents References

 Bhattacharya., Materials Selection and Design, NPTEL Course Material, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, <u>http://nptel.ac.in/courses/112104122/</u>

| 10.0  | Magazines/Journals Used and Recommended to Students                |                                                                                                              |  |
|-------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Sl.No | Magazines/Journals                                                 | Website                                                                                                      |  |
| 1     | Materials Science and<br>Metallurgy Engineering                    | http://www.sciepub.com/journal/MSME                                                                          |  |
| 2     | Journal Of Materials Science<br>& Technology                       | https://www.elsevier.com/journals/journal-of-materials-<br>science-and-technology/1005-0302?generatepdf=true |  |
| 3     | International Journal of<br>Minerals, Metallurgy and<br>Materials  | http://www.sciencedirect.com/journal/international-<br>journal-of-minerals-metallurgy-and-materials          |  |
| 4     | International Journal of<br>Minerals, Metallurgy, and<br>Materials | http://www.springer.com/materials/journal/12613                                                              |  |

## **11.0 Examination Note**

#### Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### CIE for the theory component of IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.

• 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.

• Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks)**.

• The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

#### CIE for the practical component of IPCC

• 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions.



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
| HIRASUGAR INSTITUTE OF LECTIOLOGY, NICASOSNI                                        | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

• On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.

• The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.

• The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.

- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

#### SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks.

- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of
- 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

| Module<br>No. | Lecture<br>No. | Content of Lecture                                                                                           | Teaching Method                                                                                                                                 | %of<br>Portion |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|               | 1              | Introduction: Classification of materials, crystalline<br>and non-crystalline solids, atomic bonding         | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5            |
| Ι             | 1              | Geometrical Crystallography: Symmetry elements: the operation of rotation,                                   | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5            |
|               | 2              | Proper and Improper rotation axes,<br>Screw axes, Glide planes                                               | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5            |
|               | 3              | Crystal Structure: Crystal Lattice, Unit Cell, Planes<br>and directions in a lattice, Planar Atomic Density, | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5            |
|               | 4              | packing of atoms and packing fraction                                                                        | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.                                                             | 2.5            |

#### **12.0** Course Delivery Plan



# S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity Ill SEM Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Ill SEM Accredited at 'A' Grade by NAAC 2023-24 Odd Sem

|    |   |                                                                                          | Laboratory Demonstrations and Practical                                                                                                         |     |
|----|---|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | 5 | Classification and Coordination of voids, Bragg's Law                                    | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.                                                             | 2.5 |
|    |   |                                                                                          | Laboratory Demonstrations and Practical<br>Experiments -                                                                                        |     |
|    | 6 | Imperfections in Solids: Types of imperfections, Point defects: vacancies, interstitials | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 7 | line defects,<br>2-D and 3D-defects,                                                     | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 8 | Concept of free volume in amorphous solids.                                              | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 1 | Alloy Systems: Classification of Solid solutions,<br>Hume- Rothery Rules                 | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 2 | Phase Diagrams: Gibbs Phase Rule, Solubility<br>limit, phase equilibria                  | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 3 | Binary Reactions, Lever Rule;                                                            | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
| II | 4 | Numerical on Lever Rule                                                                  | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 5 | Important phase- diagrams                                                                | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 6 | Iron-Carbon Diagram.                                                                     | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|    | 7 | Iron-Carbon Diagram continued                                                            | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical                  | 2.5 |



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC **Programmes Accredited by NBA: CSE, ECE, EEE & ME**

Mech. Engg. Dept.

**Course Plan** 

III SEM 2023-24 Odd Sem

|     |   |                                                     | Experiments -                            |     |
|-----|---|-----------------------------------------------------|------------------------------------------|-----|
|     |   | Diffusion: Diffusion-Fick's Laws, Role of           | Power-point Presentation,                |     |
|     | 8 | imperfections in diffusion.                         | Video demonstration or Simulations,      | 2.5 |
|     |   | 1                                                   | Chalk and Talk                           |     |
|     |   | Nucleation and growth: Introduction to              | Power-point Presentation,                | 2.5 |
|     | 1 | homogeneous and heterogeneous nucleation,           | Video demonstration or Simulations,      |     |
|     | - | critical radius for nucleation                      | Chalk and Talk.                          |     |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   | Heat treatment: Annealing, Normalizing,             | Power-point Presentation,                | 2.5 |
|     |   | hardening, Tempering                                | Video demonstration or Simulations,      |     |
|     | 2 | $\mathcal{O}$ 1 $\mathcal{O}$                       | Chalk and Talk.                          |     |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Nitrating Cyaniding Induction Hardening and         | Power-point Presentation.                | 2.5 |
|     |   | Flome Hordening, Decent advances in heat treat      | Video demonstration or Simulations.      |     |
|     | 3 | Traine Hardening, Recent advances in heat treat     | Chalk and Talk                           |     |
|     | 5 | technology                                          | I aboratory Demonstrations and Practical |     |
|     |   |                                                     | Eaboratory Demonstrations and Tractical  |     |
|     |   |                                                     | Payer point Presentation                 |     |
|     |   | 1 1 1 diagram,                                      | Vilue lower-point Presentation,          |     |
|     |   |                                                     | video demonstration or Simulations,      |     |
|     | 4 |                                                     | Chalk and Talk.                          | 2.5 |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
| Ш   |   |                                                     | Experiments -                            |     |
| 111 |   | Recovery-Recrystallization-Grain Growth.            | Power-point Presentation,                |     |
|     |   |                                                     | Video demonstration or Simulations,      |     |
|     | 5 |                                                     | Chalk and Talk.                          | 2.5 |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Strengthening mechanisms: Strain hardening,         | Power-point Presentation,                |     |
|     |   | 5 5                                                 | Video demonstration or Simulations,      |     |
|     | 6 |                                                     | Chalk and Talk.                          | 2.5 |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Precipitation hardening (Solid-Solution             | Power-point Presentation,                |     |
|     |   | Strengthening) Grain refinement                     | Video demonstration or Simulations,      |     |
|     | 7 | Strongaronning), Stani rennement.                   | Chalk and Talk.                          | 2.5 |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Precipitation hardening (Solid-Solution             | Power-point Presentation.                | 2.5 |
|     |   | Strengthening) Grain refinement                     | Video demonstration or Simulations.      |     |
|     | 8 | Strengthening), Grun rennenent.                     | Chalk and Talk.                          |     |
|     | - |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Surface coating technologies. Introduction          | Power-point Presentation.                |     |
|     |   | coating materials coating technologies              | Video demonstration or Simulations.      |     |
|     | 1 | coating materials, coating technologies.            | Chalk and Talk                           | 2.5 |
|     | • |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Experiments -                            |     |
|     |   | Types of coating: Electro-plating Chemical          | Power-point Presentation                 |     |
|     |   | Vanor Deposition(CVD) Drusical Vanor                | Video demonstration or Simulations       |     |
| IV  | 2 | $v$ apoi Deposition $(\nabla v D)$ , Physical Vapor | Chalk and Talk                           | 2.5 |
|     | - | Deposition( $P \vee D$ ),                           | Laboratory Demonstrations and Practical  | 2.5 |
|     |   |                                                     | Experiments -                            |     |
|     |   | High Velocity Oxy-Fuel Coating advantages and       | Power-point Presentation                 |     |
|     |   | disadvantages of surface costing                    | Video demonstration or Simulations       |     |
|     | 3 | uisauvaillages of surface coalling.                 | Chalk and Talk                           | 2.5 |
|     |   |                                                     | Laboratory Demonstrations and Practical  |     |
|     |   |                                                     | Lassianony Demonstrations and Indefical  |     |



#### S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. Course Plan

III SEM 2023-24 Odd Sem

|   |   |                                                                                                                                                        | Experiments -                                                                                                                                   |     |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | 4 | High Velocity Oxy-Fuel Coating, advantages and disadvantages of surface coating.                                                                       | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 5 | Powder metallurgy: Introduction, Powder<br>Production Techniques: Different Mechanical<br>methods: Chopping or Cutting, Abrasion<br>methods,           | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 6 | Machining methods, Ball Milling and Chemical method: Chemical reduction method.                                                                        | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 7 | Characterization of powders (Particle Size &<br>Shape Distribution), Powder Shaping: Particle<br>Packing Modifications                                 | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 8 | Lubricants & Binders, Powder Compaction &<br>Process, Sintering and Application of Powder<br>Metallurgy                                                | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 1 | Engineering Materials and Their Properties:<br>Classification, Ferrous materials: Properties,<br>Compositions and uses of Grey cast iron and<br>steel. | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 2 | Non-Ferrous materials: Properties, Compositions<br>and uses of Copper, Brass, Bronze.                                                                  | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
| V | 3 | <b>Composite materials</b> - Definition, classification, types of matrix materials & reinforcements,                                                   | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 4 | Metal Matrix Composites (MMCs), Ceramic<br>Matrix Composites (CMCs)                                                                                    | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 5 | Polymer Matrix Composites (PMCs), Particulate-<br>reinforced and fiber- reinforced composites,                                                         | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
|   | 6 | Applications of composite materials. Mechanical                                                                                                        | Power-point Presentation,<br>Video demonstration or Simulations,                                                                                | 2.5 |



| SJPN Trust's                                                                        | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
|                                                                                     | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

|   | and functional properties of Engineering<br>Materials                                                                                                         | Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments -                                                                     |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7 | The Design Process and Materials Data: Types<br>of design, design tools and materials data,<br>processes of obtaining materials data, materials<br>databases. | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |
| 8 | Material Selection Charts: Selection criteria for<br>materials, material property Charts, deriving<br>property limits and material indices.                   | Power-point Presentation,<br>Video demonstration or Simulations,<br>Chalk and Talk.<br>Laboratory Demonstrations and Practical<br>Experiments - | 2.5 |

| 13.0  |                 | Assignments, Pop Quiz, Mini Project, Seminars                                                                                 |                         |                                             |                                   |                                                                          |  |  |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------|--|--|
| Sl.No | Title           | Outcome expected                                                                                                              | Allied study            | Week No.                                    | Individual<br>/ Group<br>activity | Reference:<br>book/website /Paper                                        |  |  |
| 1     | Assignment<br>1 | Students should able study<br>the Topics and write<br>appropriate answers. Have<br>practice to solve university<br>questions. | Module 1<br>of Syllabus | 2 <sup>nd</sup> week<br>of the<br>semester  | Individual<br>Activity.           | Book 1, 2 of the text<br>book list and 1,2,3<br>of the Reference list    |  |  |
| 2     | Assignment<br>2 | Students should able study<br>the Topics and write<br>appropriate answers. Have<br>practice to solve university<br>questions. | Module 2<br>of Syllabus | 4 <sup>th</sup> week<br>of the<br>semester  | Individual<br>Activity.           | Book 1, 2 of the text<br>book list<br>and 1,2,3 of the<br>Reference list |  |  |
| 3     | Assignment<br>3 | Students should able study<br>the Topics and write<br>appropriate answers. Have<br>practice to solve university<br>questions. | Module 3<br>of Syllabus | 6 <sup>th</sup> week<br>of the<br>semester  | Individual<br>Activity.           | Book 1, 2 of the text<br>book list<br>and 1,2,3 of the<br>Reference list |  |  |
| 4     | Assignment<br>4 | Students should able study<br>the Topics and write<br>appropriate answers. Have<br>practice to solve university<br>questions. | Module 4<br>of Syllabus | 8 <sup>th</sup> week<br>of the<br>semester  | Individual<br>Activity.           | Book 1, 2 of the text<br>book list<br>and 1,2,3 of the<br>Reference list |  |  |
| 5     | Assignment<br>5 | Students should able study<br>the Topics<br>and write appropriate<br>answers. Have practice to<br>solve university questions. | Module 5<br>of Syllabus | 10 <sup>th</sup> week<br>of the<br>semester | Individual<br>Activity.           | Book 1, 2 of the text<br>book list<br>and 1,2,3 of the<br>Reference list |  |  |
| 6     | Pop<br>Quiz     | Students should be able to answer all the questions.                                                                          | Module<br>1, 2 3 4 5    | 12 <sup>th</sup> week<br>of the<br>semester | Individual<br>Activity.           | Book 1, 2 of the text<br>book list<br>and 1,2,3 of the<br>Reference list |  |  |



#### 14.0 QUESTION BANK

#### Module-I

- 1. Define unit cell, space lattice, and lattice parameter and coordination number.
- 2. List the fourteen Bravais space lattices.
- 3. Explain with neat sketch the following crystal structure I) BCC II)FCC and III)HCP.
- 4. Define atomic packing factor. Calculate Atomic Packing Factor for BCC structure.
- 5. Write the sketch of HCP unit cell and determine its APF.
- 6. If the atomic radius of lead (FCC) is 0.175 nm, calculate its unit cell, volume in meters also calculates APF.
- 7. Tantalum at 20 deg Celsius is BCC and has Atomic Radius 0.143 nm. Calculate its lattice parameter.
- 8. Classify crystal imperfections in the order of their geometry.
- 9. Explain with neat sketch I) Frenkel defect ii) interstitialacy
- 10. Draw a crystal lattice containing an edge dislocation and show the burgers vector.
- 11. With the help of neat sketch draw conventional stress-strain diagram for mild steel under uniaxial static tensionand explain the behavior of the material till fracture.
- 12. What is plastic deformation & with neat sketches plastic deformation by slip
- 13. With neat sketches plastic deformation by twinning.
- 14. Differentiate between slip and twinning deformations in materials.

#### Module – II

- 1. What is a solid solution & explain substitutional & interstitial solid solution with neat sketches.
- 2. State the Hume-Rothery rules.
- 3. State & explain Gibb's phase rule.
- 4. Explain Homogeneous nucleation & Heterogeneous nucleation.
- 5. Explain with neat sketches cast metal structures.
- 6. What are the different types of solid solutions, explain it.
- 7. List the Hume-Rothery rules for the formation of substitutional solid solutions.
- 8. State and explain Gibb's phase rule and its applicability to metallic systems.
- 9. Draw a binary eutectic phase diagram between two components, which are partially soluble in each other in thesolid state. Label all the phase fields.
- 10. Considering the example of an isomorphism system and describe the construction of phase diagrams.
- 11. State and discuss lever rule with an example.
- 12. Give typical examples for eutectic and eutectoid reactions mentioning for each the temperature and composition at which it occurs. What is an invariant reaction? Write down the following invariant reactions

a) Eutectic, b) Peritectic, c) Eutectoid.

- 13. A binary alloy of composition 40 percent B, 60 percent A contains two phases namely liquid and solid at particular temperature. The composition of solid phase is 23 percent and that of liquid phase is 68 percent B. estimate the amount of solid and liquid phases in alloy.
- 14. Describe the construction of phase diagrams by thermal analysis.
- 15. Draw Fe-C equilibrium diagram and label all the fields, also explain all the invariant reactions in the system.
- 16. Define austenite, ferrite, cementite, martensite and pearlite.
- 17. Explain effect of non-equilibrium cooling.
- 18. Explain the effect of common alloying elements in steel.

#### Module – III

- 1. Explain the steps to construct TTT diagram. Draw a labeled sketch of TTT diagram for an eutectoid steel.
- 2. What are TTT curves? Explain with neat sketch for eutectoid steels.
- 3. What are CCT curves and mention its uses.
- 4. Distinguish between TTT and CCT diagrams. Which is its practical use? Justify.
- 5. Define the process of heat treatment and classify various heat treatment processes.
- 6. What is meant by heat treatment? What are its objectives?
- 7. Explain recrystallization during annealing of metals.
- 8. Explain annealing and normalizing.
- 9. Differentiate between annealing and normalizing.
- 10. Write short notes on cyaniding and high frequency induction surface hardening.
- 11. Explain the concept of hardenability.
- 12. Describe Jominy hardenability test and its practical applications.



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
| HIRASUGAR INSTITUTE OF TECHNOLOGY, NICASOSNI                                        | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |
|                                                                                     |                   |

- 13. Both pearlite and tempered martensite contain ferrite and cementite, but tempered martensite is stronger andtougher. Explain?
- 14. What is the purpose of case hardening? Classify the methods of case hardening and describe briefly any two ofthem.
- 15. Explain recovery, recrystallization & grain growth in case of annealing.
- 16. Explain types of annealing.
- 17. What are the factors affecting the hardenability.
- 18. Explain austempering & martempering.
- 19. Explain age hardening & explain it for aluminium-copper alloys & PH steels.
- 20. Explain the composition, properties & uses for Grey cast iron, malleable cast iron & S.G. iron.

#### Module – IV

- 1. What is mean by powder metallurgy?
- 2. What are advantages and limitations of powder metallurgy.
- 3. What are the steps in powder metallurgy?
- 4. What is blending ? How it is achieved?
- 5. Explain in brief liquid penetrant test

#### Module –V

- 1. Write an engineering brief about the creep test?
- 2. Explain the mechanism of plastic deformation of metals by slip and twinning?
- 3. Describe the characteristics of ductile fracture and brittle fracture.
- 4. Explain the testing procedure for Vickers hardness testing?
- 5. Explain the two modes of plastic deformation in metals with neat sketches?
- 6. What is brittle fracture? Explain the Griffith theory on brittle fracture and deduce an expression for the critical stress required to propagate a crack simultaneously in a brittle materials?
- 7. Critically compares the deformation by slip and twinning?
- 8. Explain the types of impact tests and how ductile to brittle transition is occur with diagram.
- 9. Draw the engineering stress strain curve for mild steel, aluminium and cast iron. Discuss the tensile test and different mechanical properties obtained in tensile testing. Write a short note on compression test.
- 10. Discuss fatigue test for a metallic material. What is S-N diagram?
- 11. What are the different types of fractures in metallic materials? Give the important features of these fractured surfaces. What is the use of this study?
- 12. What are the properties measured from tensile testing and write their engineering significance? Draw the stress and strain curve for aluminium, cast iron and low carbon steel.
- 13. Describe fatigue testing and methods for improving fatigue strength of the components. Draw the S-N curve for aluminium and titanium.
- 14. Draw creep curve and explain the different stages of creep damage.
- 15. Draw S-N curve for ferrous and non-ferrous metals and explain how endurance strength can be determined. Also discuss the factors that affect the fatigue life.

#### 16.0 University Result

| Examination | S+ | S | A | В | С | D | Е | F | % Passing |
|-------------|----|---|---|---|---|---|---|---|-----------|
|             |    |   |   |   |   |   |   |   |           |

| Prepared by           | Checked by          | 0   |           |
|-----------------------|---------------------|-----|-----------|
| Rear.                 | Ø                   | ast | Ser       |
| Prof. P. M. Kokitakar | Prof. D. N. Inamdar | HOD | Principal |



# S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity Ill SEM Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Ill SEM Accredited at 'A' Grade by NAAC 2023-24 Odd Sem

| Subject Title                | BASIC THERMODYNAMICS |                               |          |  |  |
|------------------------------|----------------------|-------------------------------|----------|--|--|
| Subject Code                 | BME304               | IA Marks(25)+Assignments(10)+ | 50       |  |  |
|                              |                      | Activity (15)                 |          |  |  |
| Number of Lecture Hrs / Week | 2+2 hrs              | Exam Marks(appearing for)     | 50 (100) |  |  |
| Total Number of Lecture Hrs  | 40                   | Exam Hours                    | 03       |  |  |
| CREDITS – 03                 |                      |                               |          |  |  |

| FACULTY DETAILS:               |                                  |                                |
|--------------------------------|----------------------------------|--------------------------------|
| Name: Dr. K. M. Akkoli         | Designation: Associate Professor | Experience: 20Years            |
| No. of times course taught: 11 | Specializat                      | ion: Thermal Power Engineering |

## **1.0** Prerequisite Subjects:

| Sl. No | Branch                                      | Semester | Subject                            |
|--------|---------------------------------------------|----------|------------------------------------|
| 01     | Students should have the knowledge of basic | PUC      | Mathematics, Physics and chemistry |
|        | subjects                                    |          |                                    |

## 2.0 Course Objectives

- > Learn about thermodynamic system and its equilibrium, basic law of zeroth law of thermodynamics.
- > Understand various forms of energy heat transfer and work, Study the first law of thermodynamics.
- Study the second law of thermodynamics.
- > Interpret the behaviour of pure substances and its application in practical problems.
- > Study of Ideal and real gases and evaluation of thermodynamic properties.

#### **3.0 Course Outcomes**

Having successfully completed this course, the student will be able to understand construction and working mechanical systems.

| CO'S    | Course Outcome                                                                                                                                                                                | Cognitive<br>Level | POs             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| C204.1  | Explain fundamentals of thermodynamics and evaluate energy interactions across the boundary of thermodynamic systems.                                                                         | L1,L2&L3           | PO1,<br>PO2,PO3 |
| C204.2  | Apply 1st law of thermodynamics to closed and open systems and determine quantity of energy transfers.                                                                                        | L1,L2&L3           | PO1,<br>PO2,PO3 |
| C204.3  | Evaluate the feasibility of cyclic and non-cyclic processes using 2nd law of thermodynamics                                                                                                   | L1,L2&L3           | PO1,<br>PO2,PO3 |
| C204.4  | Apply the knowledge of entropy, reversibility and irreversibility to solve<br>numerical problems and Interpret the behaviour of pure substances and its<br>application in practical problems. | L1,L2&L3           | PO2, PO3        |
| C204.5  | Recognize differences between ideal and real gases and evaluate thermodynamic properties of ideal and real gas mixtures using various                                                         | L1,L2&L3           | PO1,<br>PO2,PO3 |
| Total I | Iours of instruction                                                                                                                                                                          | 40                 |                 |

4.0 Co

**Course Content** 

#### Module - 1

Introduction and Review of fundamental concepts: Thermodynamic definition and scope, Microscopic and Macr



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
| HIRASUGAR INSTITUTE OT LECNNOLOGY, NICASOSNI                                        | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

approaches. Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and intensive, extensive properties, specific properties, pressure, specific volume, Thermodynamic state, state point, state diagram, process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equil diathermic wall, thermal equilibrium, chemical equilibrium (*The topics are Only for Self-study and not to be asked in SEE. H may be asked for CIE*)

Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature. Ovolume gas thermometer, constant pressure gas thermometer, mercury in glass thermometer, thermocouples, electrical rest thermometer. Numerical.

Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign conv Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign conv Problems. 8 Hours

#### Module- 2

**First Law of Thermodynamics**: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, Problems.

Extension of the First law to control volume; steady flow energy equation (SFEE), Problems 8 Hours

#### -

#### Module- 3

**Second Law of Thermodynamics**: Limitations of first law of thermodynamics, Thermal reservoir, heat engine and heat pump: Schematic representation, efficiency and COP. Reversed heat engine. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle, Carnot principles. Problems

Entropy: Clausius inequality, Statement- proof, Entropy- definition, a property, change of entropy, entropy as a quantitative test for irreversibility, principle of increase in entropy, entropy as a coordinate. Problems

#### 8 Hours

#### Module- 4

Availability, Irreversibility and General Thermodynamic relations. Introduction, Availability (Exergy), Unavailable energy, Relation between increase in unavailable energy and increase in entropy. Maximum work, maximum useful work for a system and control volume, irreversibility. Problems

Pure Substances: P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor, saturated vapor and superheated vapor states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams. Steam tables and its use. Throttling calorimeter, separating and throttling calorimeter. Problems. **8 Hours** 

#### Module- 5

**Ideal gases**: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties (*Processes are not to be asked for SEE*).

**Real gases** – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart. Difference between Ideal and real gases.

Thermodynamic relations: Maxwell's equations, TdS equation. Ratio of Heat capacities and Energy equation, Joule-Kelvin effect, Clausius-Clapeyron equation. 8Hours

#### 5.0 Relevance to future subjects



9.0

# S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity Ill SEM Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Ill SEM Accredited at 'A' Grade by NAAC 2023-24 Odd Sem

| SL. No | Semester | Subject                | Topics / Relevance |
|--------|----------|------------------------|--------------------|
| 01     | IV       | Applied Thermodynamics | Industry           |
| 02     | V        | Turbo Machines         | Power Sector       |
| 03     | VI       | Heat Transfer          | Industry           |

### 6.0 Relevance to Real World

| SL. No | Real World Mapping  |
|--------|---------------------|
| 01     | Automotive Industry |
| 02     | Power Sector        |
| 03     | Aerospace Industray |

## 7.0 Gap Analysis and Mitigation

| Sl. No | Delivery Type  | Details                                                                                  |
|--------|----------------|------------------------------------------------------------------------------------------|
| 01     | NPTEL Tutorial | Topic: Energy resources, internal combustion engines, Turbines, Automation and Robotics. |

#### 8.0 Books Used and Recommended to Students

| Text B | Books                          |                            |                   |             |
|--------|--------------------------------|----------------------------|-------------------|-------------|
| Sl     | Title of the Book              | Name of the Author/s       | Name of the       | Edition and |
| No     |                                |                            | Publisher         | Year        |
| Text   | book/s                         |                            |                   |             |
| 1      | Basic and Applied              | P.K.Nag,                   | Tata McGraw       | 2nd Ed.,    |
|        | Thermodynamics                 |                            | Hill              | 2017        |
| 2      |                                |                            |                   | 2008        |
|        | Basic Engineering              | A.Venkatesh                | Universities      |             |
|        | Thermodynamics                 |                            | Press             |             |
|        | -                              |                            |                   |             |
| 3      |                                |                            |                   | 2010        |
|        | Basic Thermodynamics           | B.K Venkanna, Swati B.     | PHI, New Delhi    |             |
|        |                                | Wadavadagi                 |                   |             |
| 4      | Thermodynamics, An             | Yunus A Cenegal, Michael A | Tata McGraw       | 9th Edition |
|        | Engineering Approach,          | Boles, and Mehmet Kanoglu  | Hill publications | 2019        |
| Additi | ional Study material & e-Books |                            |                   |             |
| ٠      | Nptel.ac.in                    |                            |                   |             |
| •      | VTU, E- learning               |                            |                   |             |
| ٠      | MOOCS                          |                            |                   |             |
| •      | Open courseware                |                            |                   |             |

## **Relevant Websites (Reputed Universities and Others) for Notes** /Animation / Videos Recommended



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept.

**Course Plan** 

III SEM

2023-24 Odd Sem

#### Website and Internet Contents References

https://www.youtube.com/watch?v=9GMBpZZtjXM&list=PLD8E646BAB3366BC8

• https://www.youtube.com/watch?v=jkdMtmXo664&list=PL3zvA\_WajfGAwLuULH-L0AG9fKDgplYne

• https://www.youtube.com/watch?v=Dy2UeVCSRYs&list=PL2\_EyjPqHc10CTN7cHiM5xB2qD7BHUry7

### **10.0** Magazines/Journals Used and Recommended to Students

| Sl.No | Magazines/Journals                     |    | website                                                     |
|-------|----------------------------------------|----|-------------------------------------------------------------|
| 1     | International Journal of Heat transfer |    | https://www.journals.elsevier.com/international-journal-of- |
|       |                                        |    | fluid flow and fluid dynamics/                              |
| 2     | International Journal (                | of | <u>http://dergipark.ulakbim.gov.tr/eoguijt/</u>             |
|       | Thermodynamics                         |    |                                                             |
|       |                                        |    |                                                             |

## **11.0 Examination Note**

**Continuous Internal Evaluation (CIE):** 

• For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.

• The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.

• For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### **12.0** Course Delivery Plan

| Module | Lecture<br>No. | Content of Lecturer                                                                                                                                                                                                                                                                           | Teaching Method                                | % of<br>Portion |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|
|        | 42             | Thermodynamic definition and scope, Microscopic and<br>Macroscopic approaches. Characteristics of system<br>boundary and control surface, examples.<br>Thermodynamic properties; definition and units,<br>intensive, extensive properties, specific properties,<br>pressure, specific volume, | Chalk and Talk,<br>Power-point<br>Presentation |                 |
| 1      | 43             | Thermodynamic state, state point, state diagram, path<br>and process, quasi-static process, cyclic and non-cyclic;<br>processes; Thermodynamic equilibrium; definition,<br>mechanical equilibrium; diathermic wall, thermal<br>equilibrium, chemical                                          | Power-point<br>Presentation                    | 20%             |
|        | 44             | Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature.                                                                                                                                                                       | Chalk and Talk                                 |                 |

| ESTR OU STR |  |
|-------------|--|

## S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

| Course Plan     |
|-----------------|
| III SEM         |
| 2023-24 Odd Sem |

|   |    | Constant volume gas thermometer, constant pressure gas        | Chalk and Talk              |     |
|---|----|---------------------------------------------------------------|-----------------------------|-----|
|   | 15 | thermometer, mercury in glass thermometer,                    |                             |     |
|   | 43 | thermocouples, electrical resistance thermometer.             |                             |     |
|   |    | Numerical.                                                    |                             |     |
|   |    | Mechanics, definition of work and its limitations.            | Power-point                 |     |
|   | 46 | Thermodynamic definition of work; examples, sign              | Presentation                |     |
|   |    | convention.                                                   |                             |     |
|   |    | Displacement work; as a part of a system boundary, as a       | Chalk and Talk              |     |
|   | 47 | whole of a system boundary, expressions for                   |                             |     |
|   | ., | displacement work in various processes through p-v            |                             |     |
|   |    | diagrams.                                                     | <b>**</b> **                |     |
|   | 48 | Shaft work; Electrical work. Other types of work. Heat;       | Video demonstration         |     |
|   |    | definition, units and sign convention.                        | or Simulations,             |     |
|   | 49 | Problems.                                                     | Chalk and Talk              |     |
|   | 50 | Joules experiments, equivalence of heat and work.             | Chalk and Talk,             |     |
|   | 50 |                                                               | Presentation                |     |
|   |    | Statement of the First law of thermodynamics extension        | Chalk and Talk.             |     |
|   | 51 | of the First law to non - cyclic processes.                   | Power-point                 |     |
|   |    |                                                               | Presentation                |     |
|   |    | energy, energy as a property,                                 | P Chalk and Talk,           |     |
|   | 52 |                                                               | ower-point                  |     |
|   |    |                                                               | Presentation                |     |
| 2 |    | modes of energy,                                              | Chalk and Talk,             | 40% |
|   | 53 |                                                               | Power-point                 |     |
|   |    | Droblems                                                      | Presentation<br>Power-point |     |
|   | 54 | riotenis.                                                     | Presentation                |     |
|   |    | Extension of the First law to control volume:                 | Power-point                 |     |
|   | 55 | ,                                                             | Presentation                |     |
|   | 56 | steady flow energy equation (SFEE),                           | Power-point                 |     |
|   | 50 | <b>D</b> 11                                                   | Presentation                |     |
|   | 57 | Problems                                                      | Video demonstration         |     |
|   |    | Limitations of first law of thermodynamics. Thermal           | Chalk and Talk              |     |
|   | 58 | reservoir heat engine and heat nump:                          | Chark and Tark              |     |
|   |    | Schematic representation efficiency and COP Reversed          | Chalk and Talk              |     |
|   | 59 | heat engine                                                   | Power-point                 |     |
|   |    |                                                               | Presentation                |     |
|   |    | Kelvin - Planck statement of the Second law of                | Power-point                 |     |
|   | 60 | Thermodynamics; PMM I and PMM II, Clausius                    | Presentation                |     |
|   |    | statement of Second law of Thermodynamics,                    |                             |     |
| 3 | (1 | Equivalence of the two statements; Carnot cycle, Carnot       | Power-point                 | 60% |
|   | 61 | principles.                                                   | Presentation                |     |
|   | 62 | Problems                                                      | Chalk and Talk,             |     |
|   | 62 | Entropy: Clausius inequality, Statement- proof, Entropy-      | Chalk and Talk              |     |
|   | 03 | definition, a property, change of entropy,                    |                             |     |
|   |    | entropy as a quantitative test for irreversibility, principle | Chalk and Talk,             |     |
|   | 64 | of increase in entropy, entropy as a coordinate.              | Power-point                 |     |
|   | (5 | Duchlanc                                                      | Challs and Talls            |     |
|   | 65 | Availability Impyonaibility and Consent Themes to and         | Chark and Tark              |     |
| 4 | 66 | relations                                                     | Presentation                | 80% |
|   | 1  | 101001010.                                                    | -                           |     |

|      | S J P N Trust's<br>Hirasugar Institute of Technology, Nidasoshi                    | Mech. Engg. Dept.<br>Course Plan |  |
|------|------------------------------------------------------------------------------------|----------------------------------|--|
| NA N | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. | III SEM                          |  |
|      | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE_ECE_EEE & ME  | 2023-24 Odd Sem                  |  |

|   | 67 | Introduction, Availability (Exergy), Unavailable energy,<br>Relation between increase in unavailable energy and | Power-point<br>Presentation  |      |
|---|----|-----------------------------------------------------------------------------------------------------------------|------------------------------|------|
|   |    | increase in entropy.                                                                                            |                              |      |
|   | 68 | Maximum work, maximum useful work for a system                                                                  | Power-point                  |      |
|   |    | and control volume, irreversibility.                                                                            | Presentation                 |      |
|   | 69 | Problems                                                                                                        | Chalk and Talk               |      |
|   |    | P-T and P-V diagrams, triple point and critical points.                                                         | Power-point                  |      |
|   |    | Sub-cooled liquid, saturated liquid, mixture of saturated                                                       | Presentation                 |      |
|   | 70 | liquid and vapor, saturated vapor and superheated vapor                                                         |                              |      |
|   |    | states of pure substance with water as example. Enthalpy                                                        |                              |      |
|   |    | of change of phase (Latent heat).                                                                               | D : /                        |      |
|   | 71 | Dryness fraction (quality), T-S and H-S diagrams,                                                               | Power-point<br>Presentation  |      |
|   | /1 | representation of various processes on these diagrams.                                                          | riesentation                 |      |
|   |    | Steam tables and its use.                                                                                       | Challs and Talls             |      |
|   | 72 | calorimeter.                                                                                                    |                              |      |
|   | 73 | Problems.                                                                                                       | Chalk and Talk               |      |
|   |    | Ideal gases: Ideal gas mixtures, Daltons law of partial                                                         | Chalk and Talk               |      |
|   | 74 | pressures, Amagat's law of additive volumes, evaluation                                                         |                              |      |
|   |    | of properties of perfect and ideal gases,                                                                       |                              |      |
|   | 75 | Air- Water mixtures and related properties                                                                      | Power-point                  |      |
|   |    |                                                                                                                 | Presentation                 |      |
|   |    | Real gases – Introduction, Van-der Waal's Equation of                                                           | Power-point<br>Presentation  |      |
|   | 76 | state, Van-der Waal's constants in terms of critical                                                            | riesentation                 |      |
| 5 |    | properties,                                                                                                     | Derroe a sint                | 100% |
|   | 77 | Beaue-Bridgeman equation, Law of corresponding                                                                  | Prover-point<br>Presentation |      |
|   |    | States, compressibility factor; compressibility chart.                                                          | Power point                  |      |
|   | 78 | Difference between ideal and real gases.                                                                        | Presentation                 |      |
|   |    | Thermodynamic relations: Maxwell's equations TdS                                                                | Power-point                  |      |
|   | 79 | equation. Ratio of Heat capacities and Energy equation.                                                         | Presentation                 |      |
|   | 80 | Joule-Kelvin effect, Clausius-Clapeyron equation.                                                               | Chalk and Talk               |      |
|   | 81 | Problems                                                                                                        | Chalk and Talk               |      |
|   |    |                                                                                                                 |                              |      |

## 13.0

## Assignments, Pop Quiz, Mini Project, Seminars

| SI.No. | Title           | Outcome expected     | Allied<br>study                                | Week<br>No. | Individual /<br>Group activity | Reference:<br>book/website<br>/Paper |
|--------|-----------------|----------------------|------------------------------------------------|-------------|--------------------------------|--------------------------------------|
| 1      | Assignment 1    | : Students study the | 1,2 and                                        |             | Individual                     | Book 1, 2 of the                     |
|        | University      | Topics and prepare   | <sup>1</sup> / <sub>2</sub> of 3 <sup>rd</sup> |             | Activity.                      | reference list.                      |
|        | Questions of    | the multiple choice  | Module                                         |             |                                | Website of the                       |
|        | Introduction an | l questioner with    | of the                                         |             |                                | Text Book list.                      |
|        | Review o        | f answer.            | syllabu                                        |             |                                |                                      |
|        | fundamental     |                      | s                                              | 2           |                                |                                      |
|        | concepts, Wor   |                      |                                                | 3           |                                |                                      |
|        | and Heat, Firs  | t                    |                                                |             |                                |                                      |
|        | Law o           | f                    |                                                |             |                                |                                      |
|        | Thermodynamics  |                      |                                                |             |                                |                                      |
|        | Second Law o    | f                    |                                                |             |                                |                                      |
|        | Thermodynamics  |                      |                                                |             |                                |                                      |



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC **Programmes Accredited by NBA: CSE, ECE, EEE & ME**

Course Plan III SEM

Mech. Engg. Dept.

2023-24 Odd Sem

|   | and Entropy,     |                     |                                                |   |            |                  |
|---|------------------|---------------------|------------------------------------------------|---|------------|------------------|
| 2 | Assignment 2:    | Students study the  | 4,5 and                                        |   | Individual | Book 1, 2 of the |
|   | University       | Topics and prepare  | <sup>1</sup> / <sub>2</sub> of 3 <sup>rd</sup> |   | Activity.  | reference list.  |
|   | Questions on     | the multiple choice | Module                                         |   |            | Website of the   |
|   | Thermodynamic    | questioner with     | of the                                         |   |            | Text Book list.  |
|   | relations,       | answer.             | syllabu                                        |   |            |                  |
|   | Combustion       |                     | S                                              |   |            |                  |
|   | thermodynamics   |                     |                                                | 6 |            |                  |
|   | Pure Substances, |                     |                                                | 0 |            |                  |
|   | Introduction and |                     |                                                |   |            |                  |
|   | Review of Ideal  |                     |                                                |   |            |                  |
|   | and Real gases   |                     |                                                |   |            |                  |
|   | Thermodynamic    |                     |                                                |   |            |                  |
|   | relations        |                     |                                                |   |            |                  |
|   |                  |                     |                                                |   |            |                  |

15.0

## **QUESTION BANK**

| Sample<br>Ouestions | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Questions           | Module 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| VI                  | <ul> <li>Module 1</li> <li>1. Define the word' Thermodynamics', and differentiate microscopic and macroscopic approaches.</li> <li>2. Illustrate open and closed systems with examples.</li> <li>3. Differentiate the intensive and extensive properties.</li> <li>4. Describe thermodynamic equilibrium.</li> <li>5. Explain Zeroth law of thermodynamics.</li> <li>6. Explain Ternoth law of thermodynamic temperature scale.</li> <li>7. Describe the various thermodynamic temperature scale.</li> <li>8. Explain International Temperature Scales, Standards</li> <li>9. Solve numericals on temperature scales</li> <li>10. Explain System, Boundary and Control volume</li> <li>11. Define, differentiate and illustrate the heat and work and its sign conventions.</li> <li>12. Explain the displacement work.</li> <li>13. Analyze the various thermodynamic processes through PV diagram.</li> <li>14. Formulate different types of works and describe the conversion to heat and vice versa.</li> <li>15. Explain the similarities and dissimilarities between work and heat Describe the Joule's experiment and analyze the formulation.</li> <li>17. Define and explain the first law of thermodynamics.</li> <li>18. Apply the first law of thermodynamics.</li> <li>19. Explain the specific heat and enthalpy and their relations.</li> <li>20. Derive the SFEE and formulate the different applications of SFEE.</li> </ul> |  |  |  |  |  |
|                     | 21. Explain what are the significance of SFEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | 22. Explain PMM I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                     | 23. Solve numericals on first law of thermodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                     | Module 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                     | 1. Define and explain the different definitions of Second Law of Thermodynamics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                     | 2. Explain thermal energy reservoir, sink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| VII                 | 3. Explain the two statements on second law and draw similarity between them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| • •                 | 4. Explain PMM II and differentiate between PMM-I and PMM-II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                     | 5. Explain and differentiate reversible and irreversible processes and their factors to make different principles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                     | 6. Define heat engine and heat pump. Explain their schematic diagram.Define the "Entropy" and explain the Classius inequality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

|              |               | S J P N Trust's                                                                                                                                                                                       | Mech Engg Dent    |  |  |  |  |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
|              |               | Hirasugar Institute of Technology, Nidasoshi                                                                                                                                                          | Course Plan       |  |  |  |  |
|              | A.            | Inculcating Values, Promoting Prosperity                                                                                                                                                              |                   |  |  |  |  |
| V m          |               | Approved by AICTE, Recognized by Govi.or Karnataka and Annialed to VTO Belagavi.                                                                                                                      |                   |  |  |  |  |
| ESTE JU 1996 |               | Programmes Accredited by NBA: CSE, ECE, EEE & ME                                                                                                                                                      | 2023-24 Odd Sem   |  |  |  |  |
|              | 7.            | Derive the proof of inequality statement and explain its applications.                                                                                                                                |                   |  |  |  |  |
|              | 8.            | Derive to show that the entropy of universe is always increasing.                                                                                                                                     |                   |  |  |  |  |
|              | 9.            | Solve the examples by using TDS relation.                                                                                                                                                             |                   |  |  |  |  |
|              | 10.           | Explain different available and unavailable energy                                                                                                                                                    |                   |  |  |  |  |
|              | Mo            | odule 3                                                                                                                                                                                               |                   |  |  |  |  |
|              | 1.            | Derive and explain Vander Waal's Equation and also define compressibility factor                                                                                                                      | or.               |  |  |  |  |
|              | 2.            | Describe and use of compressibility chart.                                                                                                                                                            |                   |  |  |  |  |
|              | 3.            | Derive and Explain Dalton Law of partial pressure                                                                                                                                                     |                   |  |  |  |  |
|              | 4.            | Define Amagat's law of additive volumes, evaluation of properties, Analysis of v                                                                                                                      | arious processes. |  |  |  |  |
|              | 5.            | Concept of Maxwell Relation                                                                                                                                                                           |                   |  |  |  |  |
| VIII         | 6.            | Concept of Clausius Clayperson's Equations                                                                                                                                                            |                   |  |  |  |  |
|              | 7.            | 7. Derive and explain Ideal gas; equation of state, internal energy and enthalpy as functions of                                                                                                      |                   |  |  |  |  |
|              |               | temperature only, universal and particular gas constants, specific heats, perfect and semi-perfect gases.                                                                                             |                   |  |  |  |  |
|              | 8.            | 8. Evaluate heat and work for different quasi-static process.                                                                                                                                         |                   |  |  |  |  |
|              | 9.            | 9. What is Theoretical (Stoichiometric) air for combustion of fuels, excess air, actual combustion.                                                                                                   |                   |  |  |  |  |
|              | 10.           | Explain entralpy of formation, entralpy and internal energy of combustion, addate                                                                                                                     | batic frame       |  |  |  |  |
|              | 11            | Explain compution afficiency                                                                                                                                                                          |                   |  |  |  |  |
|              | M             | schola 4                                                                                                                                                                                              |                   |  |  |  |  |
|              | 1             | Explain different available and unavailable energy                                                                                                                                                    |                   |  |  |  |  |
|              | $\frac{1}{2}$ | Derive and explain Ideal gas: equation of state internal energy and enthalpy as fu                                                                                                                    | unctions of       |  |  |  |  |
|              | 2.            | 2. Derive and explain lucal gas, equation of state, internal energy and enunary as functions of temperature only universal and particular gas constants specific heats perfect and semi-perfect gases |                   |  |  |  |  |
| IV           | 3.            | Evaluate heat and work for different gausi-static process.                                                                                                                                            |                   |  |  |  |  |
| IA           | 4.            | Explain PT and PV diagram of pure substances.                                                                                                                                                         |                   |  |  |  |  |
|              | 5.            | Define the dryness fraction and the change of phase.                                                                                                                                                  |                   |  |  |  |  |
|              | 6.            | Represent the various processes on T-S and H-S diagram.                                                                                                                                               |                   |  |  |  |  |
|              | 7.            | Use the steam tables.                                                                                                                                                                                 |                   |  |  |  |  |
|              | 8.            | Explain the throttling and separating calorimeter.                                                                                                                                                    |                   |  |  |  |  |
|              | Mo            | odule 5                                                                                                                                                                                               |                   |  |  |  |  |
|              | 1.            | Derive and explain Vander Waal's Equation and also define compressibility factor                                                                                                                      | or.               |  |  |  |  |
|              | 2.            | Describe and use of compressibility chart.                                                                                                                                                            |                   |  |  |  |  |
| X            | 3.            | Derive and Explain Dalton Law of partial pressure                                                                                                                                                     |                   |  |  |  |  |
|              | 4.            | Define Amagat's law of additive volumes, evaluation of properties, Analysis of v                                                                                                                      | arious processes. |  |  |  |  |
|              | 5.            | What are the thermodynamic relations.                                                                                                                                                                 | -                 |  |  |  |  |
|              | 6.            | Concept of Maxwell Relation                                                                                                                                                                           |                   |  |  |  |  |
|              | 7.            | Concept of Clausius Clayperson's Equations                                                                                                                                                            |                   |  |  |  |  |

## 16.0 University Result

| Examination | S⁺ | S | Α | В | С | D | E | F | % Passing |
|-------------|----|---|---|---|---|---|---|---|-----------|
|             |    |   |   |   |   |   |   |   |           |
|             |    |   |   |   |   |   |   |   |           |

| _ Prepared by   | Checked by            |        |           |
|-----------------|-----------------------|--------|-----------|
| -butterd        | M.                    | apple. | Jer       |
| Dr. K. M.Akkoli | Dr. M. M. Shivashimpi | HOD    | Principal |



| Subject Title               | Introduction to Modeling and Design for Manufacturing |            |    |  |  |
|-----------------------------|-------------------------------------------------------|------------|----|--|--|
| Subject Code                | BMEL305                                               | IA Marks   | 50 |  |  |
| Teaching Hours/Week (L:T:P: | 0:0:2:0                                               | Exam Marks | 50 |  |  |
| Total Hours of pedagogy     | 14 Sessions                                           | Exam Hours | 03 |  |  |
| CREDITS – 01                |                                                       |            |    |  |  |

| FACULTY DETAILS:                      |                         |           |                      |
|---------------------------------------|-------------------------|-----------|----------------------|
| Name: Prof. P. M. Kokitakar           | Designation: Asst. Prof | essor     | Experience: 05 Years |
| <b>No. of times course taught:</b> 02 |                         | Specializ | ation:Machine Design |

## **1.0 Prerequisite Subjects:**

| Sl. No | Branch                 | Semester | Subject                 |
|--------|------------------------|----------|-------------------------|
| 01     | Mechanical Engineering | I/II     | CAED                    |
| 02     | Mechanical Engineering | III      | Mechanical Measurements |

## 2.0 Course Objectives

- Develop a comprehensive understanding of mechanical assemblies and design for manufacturing.
- Learn and Apply best practices to create designs that are robust, adaptable, and cost effective.
- Master the art of maintaining control over designs throughout the entire lifecycle, from initial sketch to final production
- Gains hands on experience in practical exercises and projects to reinforce theoretical concepts.
- Acquire effective communication and collaboration skills for multidisciplinary teamwork in design and production processes

#### **3.0 Course Outcomes**

At the end of the course the students will be able to:

| CO     | Description                                                    |
|--------|----------------------------------------------------------------|
| C205.1 | Create and modify a form-based design.                         |
| C205.2 | Use design tools for moulded parts.                            |
| C205.3 | Demonstrate proficiency in the setup and creation of a design. |
| C205.4 | Simulate the assembly of machine components in 3D environment. |

## 4.0 Course Content

Module 1 Sessions



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
|                                                                                     | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

**Introduction** to Computer Aided Sketching Review of graphic interface of the software. Review of 2D Sketching, Parametric Solid Modelling, Assembly creation and product rendering, Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Devlations, Methods of placing limit dimensions, Types of fits with symbols and applications, Geometrical tolerances on drawings, Standards followed in industry. (Above topics to be studied as a review)

**Geometrical Dimensioning and Tolerances (GD&T):** Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards followed in industry. **(Only for CIE)** 

**The basics of sketching and modelling:** Explore Fusion 360 User Interface, Navigation and display settings. Create new projects and designs, creating basic 2D sketches, Creating & Modifying a solid 3D body with Sections. (For SEE)

#### Module 2 (only for CIE), 02 Sessions

Create draft during a feature, create draft as a feature. Add ribs and plastic supports, Create holes and threads. **Thread Forms:** Terminologies, ISO Metric, BSW, Square & Acme. Seller threads, American Standard Thread. Use a coil feature, Mirrors and patterns. **Fasteners:** 3D & Section views - Hexagonal headed bolt and nut with washer, Square headed bolt and nut with washer. Keys: Parallel Key, Taper Key & Feather Key.

#### Module 3

#### **04 Sessions**

**06 Sessions** 

The different ways to create components, Use scripts to create gears, Component color swatch and color cycling. Use McMaster Carr parts in a design.

Assembly of Joints and Coupling using 3D environment

Joints: Like Cotter joint (socket and spigot), knuckle joint (pin joint).

Couplings: Like flanged coupling universal coupling.

#### Module 4

Assembly Drawings: (Part drawings shall be given) Drawing Basics-Detailing Drawings. Explode a 3D model for a drawing, Create a drawing sheet and views. Add geometry and dimensions to a drawing, Add GD & T test, BOM, tables and symbols, Place an exploded view, Edit a title block, Export to different file formats.

- 1. LIFTING DEVICE (Screw Jack)
- 2. BEARINGS (Plumber Block)
- 3. MACHINE TOOL COMPONENT (Machine Vice or Tailstock)
- 4. VALVES (Ram's Bottom Safety Valve)
- 5. IC ENGINE COMPONENTS (Piston or Connecting rod)

## 5.0 Relevance to future subjects

| Sl No | Semester | Subject                            | Topics                                                   |  |  |  |
|-------|----------|------------------------------------|----------------------------------------------------------|--|--|--|
| 01    | VIII     | Project work                       | Drawings, Part Modeling                                  |  |  |  |
| 02    | V/VI     | Design of Machine<br>Elements I/II | Fasteners, Keys and Joints, Rivets and Assembly drawings |  |  |  |



#### S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi **Course Plan** Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. III SEM Accredited at 'A' Grade by NAAC 2023-24 Odd Sem Programmes Accredited by NBA: CSE, ECE, EEE & ME

#### **Relevance to Real World** 6.0

| SL.No | Real World Mapping                                   |
|-------|------------------------------------------------------|
| 01    | Industrial drawings and design of various components |
| 02    | Model creation for analysis                          |
| 03    | Development of a software applications               |
| 7.0   | Gap Analysis and Mitigation                          |

| Sl. No | Delivery Type | Details                                         |
|--------|---------------|-------------------------------------------------|
| 01     | Tutorial      | Topic: Lettering, Line, Methods of dimensioning |
| 02     | NPTEL         | Assembly Application                            |

#### 8.0 **Books Used and Recommended to Students**

#### Text Books

- K L Narayana, P Kannaiah, K Venkata Reddy, "Machine Drawing", New Age International, 3rd Edition. 1) ISBN-13: 978-81-224-2518-5, 2006
- N D Bhatt, "Machine Drawing", Charotar Publishing House Pvt. Ltd., 50th Edition, ISBN-13: 978-2) 9385039237, 2014
- 3) Machine drawing by KR Gopalakrishna, Subhash Publication

#### **Reference Books**

- "A Text Book of Computer Aided Machine Drawing", S. Trymbakaa Murthy, CBS Publishers, New Delhi, 1) 2007.
- 2) 'Machine Drawing', K.R. Gopala Krishna, Subhash publication.

#### Additional Study material & e-Books

- Sadhu Singh, P. L. Sah, "Fundamentals of Machine Drawing", PHI Learning Pvt. Ltd, 2nd Edition, 1) ISBN:9788120346796, 2012
- 2) Ajeet Singh, "MACHINE DRAWING", Tata McGraw-Hill Education, , ISBN: 9781259084607, 2012

#### **Relevant Websites (Reputed Universities and Others) for** 9.0 Notes/Animation/Videos Recommended

#### Web links and Video Lectures (e-Resources):

- 1) Learn fusion 360:https://www.autodesk.com/certification/learn/course/learn-fusion-360-in-90minutes
- Complete Screw Jack Assembly: https://youtube.com/playlist?list=PLU-GpaMbhzztmf69-2) pn09XXoJXRdFGVzx&feature=shared
- Learn Fusion 360 in 2.25 Hours Complete Course for Beginners! 2023 EDITION 3) :https://youtu.be/M0TQR8t0pQ8?feature=shared

#### 10.0 Magazines/Journals Used and Recommended to Students

| Sl.No | Magazines/Journals       | Website                                                      |
|-------|--------------------------|--------------------------------------------------------------|
| 1     | Journal of Aircraft      | http://arc.aiaa.org/loi/ja                                   |
| 2     | International Journal of | http://www.sciencedirect.com/science/journal/00207683        |
|       | Solids and Structures    |                                                              |
| 3     | Journal of               | http://manufacturingscience.asmedigitalcollection.asme.org/i |
|       | Manufacturing Science    | ssue.aspx?journalid=125&issueid=27340                        |
|       | and Engineering          |                                                              |

| THE REAL |     | S J P N Trust's                                                                     | Mech. Engg. Dept.         |
|----------|-----|-------------------------------------------------------------------------------------|---------------------------|
|          |     | HIRASUGAR INSTITUTE OT TECHNOLOGY, NICASOST                                         | ni<br>Sperity Course Plan |
|          |     | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belag      | gavi. III SEM             |
| and form |     | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem           |
|          |     |                                                                                     |                           |
| 4        | Ame | erican Fastener <u>http://www.fastenerjournal.com/</u>                              |                           |

#### Assessment Details (both CIE and SEE)

**Examination Note** 

Journal

11.0

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and that for SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures not less than 40% (40 Marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### **Continuous Internal Evaluation (CIE):**

CIE marks for the practical course is 50 Marks.

• CIE shall be evaluated for max marks 100. Marks obtained shall be accounted for CIE final marks, reducing itby 50%.

•CIE component should comprise of

- Continuous evaluation of Drawing work of students as and when the Modules are covered.
- At least one closed book Test covering all the modules on the basis of below detailed weightage.
- Weightage for Test and Continuous evaluation shall be suitably decided by respective course coordinators.

|         | Max Manlawa | EvaluationWeightageinmarks |                          |  |  |  |
|---------|-------------|----------------------------|--------------------------|--|--|--|
| Module  | ightage     | Computerdisplay≺<br>intout | Preparatoryske<br>tching |  |  |  |
| Module1 | 15          | 10                         | 05                       |  |  |  |
| Module2 | 15          | 10                         | 05                       |  |  |  |
| Module3 | 30          | 20                         | 10                       |  |  |  |
| Module4 | 40          | 30                         | 10                       |  |  |  |
| Total   | 100         | 70                         | 30                       |  |  |  |

#### SemesterEndEvaluation(SEE):

SEEmarksforthepracticalcourseis50Marks.

- The duration of SEE is 03 hours. Questions shall be set worth of 3 hours
- SEEshallbeconductedjointlybythetwoexaminers(one internal and one external)areappointedbytheUniversity.
- SEEshallbeconducted and evaluated form aximum of 100 marks as shown in table below. Marksobtained shall be accounted for SEE final marks, reducing it to 50 marks.
- Questionpapershallbesetjointlybybothexaminersandmadeavailableforeachbatchaspersched ule.
- Evaluationshallbecarriedjointlybyboththeexaminers.
- Schemeof

Evaluation: Tobedefined by the examiners jointly and the same shall be submitted to the university along with question paper.

| One | fullquestionshallbesetfrom | each | Modulesasperthe |
|-----|----------------------------|------|-----------------|
|-----|----------------------------|------|-----------------|

Page | 51



| belowtabledweightagedetails. However, the student may be awarded full marks, if |
|---------------------------------------------------------------------------------|
| he/shecompletessolutiononcomputerdisplaywithoutsketch.                          |

|            | Max.Mark       | EvaluationWeightageinmarks   |                          |  |  |  |
|------------|----------------|------------------------------|--------------------------|--|--|--|
| Module     | sweightag<br>e | Computerdisplay<br>&printout | Preparatoryske<br>tching |  |  |  |
| Module1or2 | 20             | 15                           | 05                       |  |  |  |
| Module3    | 30             | 20                           | 10                       |  |  |  |
| Module4    | 50             | 40                           | 10                       |  |  |  |
| Total      | 100            | 75                           | 25                       |  |  |  |

## 12.0 Course Delivery Plan

| Module                                                                          | Session                           | Content of Lecturer                                                                                                                                                             |       |
|---------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| т                                                                               | 1                                 | Introduction to Computer Aided Sketching Review of graphic Interface of the software, Geometrical Tolerances and Dimensioning                                                   | 14 29 |
| I                                                                               | 2                                 | The Basics of sketching and Modelling: Creating Basic 2D sketches and Creating 3D Solid with sections.                                                                          | 14.28 |
| п                                                                               | 3                                 | Use of a Draft, ribs, coil feature, mirror and pattern commands.<br>Thread Forms: Terminologies, ISO Metric, BSW, Square, Acme and<br>seller Threads, American Standard thread. | 14 29 |
|                                                                                 | 4                                 | Fasteners: Hexagonal Headed bolt and Nut with washer, Square Headed<br>bolt and Nut with washer. (3D & Sectional views),<br>Keys: Parallel key, Taper key, Feather Key          | 14.20 |
| 5 Assembly of Joints using 3D Environment :<br>Cotter Joint(Socket and Spigot), |                                   | Assembly of Joints using 3D Environment :<br>Cotter Joint(Socket and Spigot),                                                                                                   |       |
| ш                                                                               | 6                                 | Knuckle joint(Pin Joint)                                                                                                                                                        | 28 57 |
| 111                                                                             | 7                                 | Assembly of Couplings using 3D Environment:<br>Flanged Coupling,                                                                                                                | 20.37 |
|                                                                                 | 8                                 | Universal Coupling                                                                                                                                                              |       |
|                                                                                 | 9                                 | Assembly Drawings: Drawing Basics-Detailing Drawings. Explode a 3D model for a drawing, Create a drawing sheet and views.                                                       |       |
| IV                                                                              | 10                                | 1) Lifting Device(Screw Jack)                                                                                                                                                   | 42.85 |
|                                                                                 | 11   2)   Bearings(Plummer Block) |                                                                                                                                                                                 |       |
|                                                                                 | 12                                | 3) Machine Tool Component(Machine Vice or tail stock),                                                                                                                          |       |
|                                                                                 | 13                                | 4) Tailstock of lathe/Valves(Rams Bottom safety valve),                                                                                                                         |       |
|                                                                                 | 14                                | 5) IC Engine Component(Piston or Connecting Rod)                                                                                                                                |       |

| SI.<br>No | Title | Outcome expected | Allied study | Week<br>No. | Individual /<br>Group<br>activity | Reference:<br>book/website<br>/Paper |
|-----------|-------|------------------|--------------|-------------|-----------------------------------|--------------------------------------|
|-----------|-------|------------------|--------------|-------------|-----------------------------------|--------------------------------------|

|   |                                                                        | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.<br>Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME |                                                                                                                            |                                        |    |                                                                                       | Mec<br>C<br>202  | h. Engg. Dept.<br>Course Plan<br>III SEM<br>23-24 Odd Sem                               |                 |
|---|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|---------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|-----------------|
| 1 | Assignment 1:<br>Geometrical<br>DimensioningandT<br>olerances (GD&T)   |                                                                                                                                                                           | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions.                   | Module 1 of<br>the syllabus            | 2  | Individual<br>Activity.<br>Printed<br>solution<br>expected.                           |                  | Book 1, 2 of th<br>reference lis<br>Website of th<br>Reference list                     | ie<br>it.<br>ie |
| 2 | Assignn<br>Questio<br>Orthogr<br>Projectio                             | nent 2:<br>ns on<br>aphic<br>ons                                                                                                                                          | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions.                   | Module 1 of<br>the syllabus            | 4  | Individual<br>Activity.<br>Printed<br>solution<br>expected.                           |                  | Book 1, 2 of th<br>reference lis<br>Website of th<br>Reference list                     | ie<br>st.<br>ie |
| 3 | Assignment 3:<br>Questions on<br>Thread forms and<br>fasteners<br>Keys |                                                                                                                                                                           | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions.                   | Module 2 of<br>the syllabus            | 6  | Individual<br>Activity.<br>Printed<br>solution<br>expected.                           |                  | Book 1, 2 of th<br>reference lis<br>Website of th<br>Reference list                     | ie<br>st.<br>ie |
| 4 | Assignn<br>Questio<br>Assemb<br>oupling                                | nent 4:<br>ns on<br>olyofJoints,c<br>s                                                                                                                                    | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions.                   | Module 3 of<br>the syllabus            | 8  | Individual<br>Activity.<br>Printed<br>solution<br>expected.                           |                  | Book 1, 2 of th<br>reference lis<br>Website of th<br>Reference list                     | ie<br>st.<br>ie |
| 5 | Assignn<br>Questio<br>Assemb<br>eCompo                                 | nent 5:<br>ns on<br>olyofMachin<br>onents                                                                                                                                 | Students study the<br>Topics and write the<br>Answers. Get practice<br>to solve university<br>questions.                   | Module 4 of<br>the syllabus            | 10 | Individual<br>Activity.<br>Printed<br>solution<br>expected.                           |                  | Book 1, 2 of th<br>reference lis<br>Website of th<br>Reference list                     | ie<br>st.<br>ie |
| 6 | Mini Pro<br>Rivets b<br>students                                       | oject<br>aased for the<br>s groups                                                                                                                                        | Students study the<br>Rivets applications<br>from Real World<br>Example view. Gain<br>Knowledge of Rivets<br>Applications. | Syllabus with<br>Real World<br>Mapping | 12 | Group<br>Activity.<br>Student Gro<br>need to<br>perform<br>Project and<br>a brief Rep | oup<br>do<br>ort | All Books / paper<br>Resources / Study<br>Material. All<br>Internet / Web<br>resources. |                 |

## **14.0 QUESTION BANK**

#### MODULE 1:

LIMITS, FITS AND TOLERANCES

1. Define Limits, Fits and Tolerances



2. Explain with neat sketch Types of fits with symbols and applications

#### **ORTHOGRAPHIC VIEWS**

Draw the following views of machine components Sectional FV, TV, Left side view.



3. Draw neat and proportionate sketches of the following.

i) ISO screw thread profile of pitch 50mm indicate all proportions and dimensions.

ii) Two views of hexagonal headed bolt with nut for a 30mm diameter bolt. Take length of bolt equal to 125mm.

- iii) Castle nut.
- 4. Make neat and proportionate sketches of the following.

#### i) Acme thread,

- ii) Two view of M20 hexagonal bolt with flanged nut. Consider length of the Shank as 150mm,
- iii) Counter sunk head screw.
- 5. Draw a proportional neat sketch of a Knuckle joint to connect two rods of 20mm dia. Indicate all the proportions with dimensions.
- 6. Sketch a proportionate sectional front view of a knuckle joint to connect two rods of diameter 20mm. Indicate a few important dimensions in terms of diameter 'd'.

#### **FASTNERS:**

1. Draw two views of



#### a.Hexagonal bolt and

b.Square headed bolt of size 25mm dia and 100mm long. Indicate all the dimensions.

2. Draw the three views of an ISO-threaded hexagonal bolt 140mm long, 24mm diameter and a threaded length of 60mm, with a hexagonal nut. Indicate all the proportions and actual dimensions.

#### **KEYS:**

- 1. Draw the tow views of a sunk key fastening a boss to a shaft of 40mm diameter. The noncircular views of the assembly should be shown in half section. Indicate the actual dimensions and empirical proportions of the key.
- Sketch to 1:1 scale, inserting all the dimensions, tow views of a wheel boss fixed to a shaft by means of a sunkgib-head key using the following dimensions. Diameter of the shaft=50mm, diameter of boss=100mm, length of boss=75mm.

Using empirical proportions for the gib-head key, the view showing the length of the key should be drawn in section. Indicate the actual dimensions of the key.

- 3. Draw in assembly the flat and hollow saddle keys for 40mm diameter shaft. Use empirical proportions. The drawing should be completely dimension.Draw the feather key locked to a shaft of 40mm diameter fastened to a boss. Show the non circular view of the assembly in half section. Fully dimension the drawing.
- 4. Sketch to 1:1 scale, inserting dimensions, two views of a boss fixed to a shaft by means of woodruff key. Diameter of the shaft is 50mm. diameter of the boss is 100mm. the length of the boss is 75mm.

#### **MODULE 3: COUPLINGS:**

- 1. Draw i) half sectional front view with top half section and ii) Side view of a protected type flange coupling to connect two shafts of diameter 25mm each.
- Prepare free hand sketches of a protected type flange coupling as per instruction given below: i) Sectional elevation with top half in section. Ii) Right view. Take diameter of shaft D=30mm and a scale of 1:1. Indicate important dimensions on the sketches.
- 3. Prepare free hand sketches (half sectional front view-top half) of a protected type flange coupling for a shaft of 30mm dia adopt. Standard proportions add side view. Mark important dimensions/proportions on the views.
- 4. Draw to 1:1 scale, the following views of a protected type flange coupling (diameter of shaft=20mm):

i) Front view with top half section.

ii) Left view looking form the nut end. Indicate important dimensions, add parts list.

- 5. Draw the following views of a UNIVERSAL COUPLING used to connect two rods of diameter 20mm:
  - i. Sectional front view.
  - ii) Profile view.
- 6. Draw a free hand sketch of a flanged nut assuming the nominal diameter to be 20mm.
- 7. Draw a neat and proportionate sketch of a protected type of flanged coupling to connect two shafts of 25mm showing the following views.
  - i) Front view with top half in section.
  - ii) Simple top view.



iii) Right side view.

- 8. draw i) Half sectional front view, with top half in section ii) side view of a bushed pin type flange coupling to connect two shafts, each of diameter 30mm.
- i) Prepare a neat and proportionate free hand sketch of a bushed-pin type of flexible coupling to connect two shafts of 20mm diameter for the following views: i)Front view with top half in section. ii) Side view form pin-head end.
- 2. Sketch neat proportional half sectional front view of protected type flanged coupling to connect two shafts of 20mm diameter. Indicate all proportions with dimensions. Prepare parts list.
- 3. Sketch the following view of a Flanged coupling (protected type) to connect two shafts of 20mm diameter.
  - i) Front view with top half in section.
  - ii) Left side view.
- 4. Sketch half sectional front view of a flange coupling unprotected type to connect two shafts 20mm diameter. Indicate all proportions. Add parts list.
- 5. Sketch sectional front view of a Universal coupling to connect two rods of diameter 30mm. indicates all dimensions, add parts lists.
- 6. Draw the following, views of pin type flexible coupling, to connect to shafts of 30mm diameter.
  - i) Front view with top half in section,
  - ii) Side view from the pin end.
- 7. Sketch the sectional front view of a flexible coupling to connect two shafts of 25mm dia with all dimensions.

#### **MODULE4 :**

#### ASSEMBLY DRAWINGS: (Part drawings should be given)

- 1. Details of a "PLUMMER BLOCK" is shown in fig. Assemble the parts and draw the following views with all important dimensions.i) Left half sectional view.ii) Top view.
- 2. Fig. shows the details of "SCREW JACK". Assemble the parts and draw the following views

i) Front view showing right half in section and ii) top view.

- 3. Fig. shows the details of a "Ramsbottom safety valve". Assemble the parts and draw the following views. Dimension the drawings.i) Front view in section.ii) Top view.
- 4. Details of a "PLUMMER BLOCK" are shown in fig.1.2. Assemble the parts and draw the following views of the assembly.i) Front view showing right half in section.ii) Top view.
- 5. Fig. shows the details of an I.C Engine Connecting Rod. Assemble the parts and draw the following views. Dimension the drawings.i) Front view with top half in section.ii) Top view.
- 6. Fig. shows the details of a Tail-Stock of a Lathe. Assemble the parts and draw.i) Sectional Front view.ii) Top view.
- 7. Fig. shows the details of a "CONNECTING ROD". Assemble the parts and draw the following views. Dimension the drawings .i) Front view and ii) Top view.

| Prepared by          | Checked by         | 0     |           |
|----------------------|--------------------|-------|-----------|
| Real.                | Ø                  | Cloth | Ser       |
| Prof.P. M. Kokitakar | Prof.D. N. Inamdar | HOD   | Principal |

|         | S J P N Trust's<br>Hirasugar Institute of Technology, Nidasoshi                     | Mech. Engg. Dept.<br>Course Plan |
|---------|-------------------------------------------------------------------------------------|----------------------------------|
|         | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM                          |
| TAN INS | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem                  |

| Subject Title                             | Smart Materials & Systems (Elective:Emerging Trend Course-ETC) |                             |                               |  |
|-------------------------------------------|----------------------------------------------------------------|-----------------------------|-------------------------------|--|
| Subject Code                              | BME306B                                                        | BME306B CIE(50)+SEE(50) 100 |                               |  |
| Number of Lecture Hrs/Week                | 3L                                                             | Exam Marks(appearing for)   | 100 & reduced to 50 for grade |  |
| Total Number of Lecture Hrs40Exam Hours03 |                                                                |                             |                               |  |
| CREDITS – 03                              |                                                                |                             |                               |  |

| FACULTY DETAILS:               |                               |                                           |  |  |
|--------------------------------|-------------------------------|-------------------------------------------|--|--|
| Name:                          | Designation:                  | Experience:                               |  |  |
| Dr.S.N.Topannavar              | Professor & Head              | 25 years                                  |  |  |
|                                |                               |                                           |  |  |
| No. of times similar course ta | ught: First time (New Course) | Specialization: Thermal Power Engineering |  |  |

## **1.0** Prerequisite Subjects:

| Sl. No | Branch | Semester              | Subject                                         |
|--------|--------|-----------------------|-------------------------------------------------|
| 01     | Any    | PUC and diploma level | Chemistry, Physics and materials related topics |

## 2.0 Course Objectives

Student is able to...

To make the students understand about smart materials

To make students to know about making of material smart

To enable the students to appreciate the material properties

## **3.0 Course Outcomes**

| СО     | Course Outcome                                                                                                                                                                                 |    | POs                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|
| C207.1 | Understand, and apply the smart materials structure, components, stimuli-<br>response for various applications and select and justify appropriate materials<br>for specific applications       | L3 | PO1-PO4, PO6,<br>PO7 & PO12 |
| C207.2 | Understand and analyze the basic principles, properties and classifications of various electrically activated materials and their applications and evaluate based on the stimuli and actuation | L3 | PO1-PO4, PO6,<br>PO7 & PO12 |
| C207.3 | Understand and analyze the basic principles, properties and classifications of various thermally activated materials and their applications and evaluate based on the stimuli and actuation    | L2 | PO1-PO4, PO6,<br>PO7 & PO12 |
| C207.4 | Understand and analyze the basic principles, properties and classifications of various smart polymers and their applications and evaluate based on the stimuli and actuation                   | L3 | PO1-PO4, PO6,<br>PO7 & PO12 |
| C207.5 | Understand and analyze the basic principles, properties and classifications of various chemically activated materials and their applications and evaluate based on the stimuli and actuation   | L2 | PO1-PO4, PO6,<br>PO7 & PO12 |

4.0 University Course Content



| S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-------------------------------------------------------------------------------------|-------------------|
| HIRASUGAR INSTITUTE OF TECHNOLOGY, NICASOSNI                                        | Course Plan       |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

#### Module-01:

**Smart materials and structures**: System intelligence- components and classification of smart structures, common smart materials and associated stimulus-response, Application areas of smart systems

#### Module-02:

**Electrically Activated Materials:** Piezoelectricity, Piezoresistivity, Ferroelectricity, Piezoelectric materials- piezoelectric effect, Piezoceramics, Piezopolymers, Piezoelectric materials as sensors, Actuators and bimorphs, nanocarbon tubes

#### Module-03:

**Thermally activated materials**: Shape memory materials; Shape memory alloys (SMAs), Classification – Transformation - Ni-Ti Alloys, Shape memory effect, Martensitic transformation, One way and two-way SME, binary and ternary alloy systems, Functional properties of SMAs, Shape memory ceramics – Shape memory polymers – Applications

#### Module-04:

**Smart polymers**: Thermally responsive polymers, Electroactive polymers microgels, Synthesis, Properties and Applications, Protein-based smart polymers, pH-responsive and photo-responsive polymers, Self-assembly, Drug delivery using smart polymers

#### Module-05:

**Chemically Activated Materials** - Chemical Gels - Self healing materials Optically Activated Materials – Optically activated polymers - Azobenzene - Liquid Crystal, Smart materials for space applications: Elastic memory composites, Smart corrosion protection coatings, Sensors, Actuators, Transducers

## 5.0 Relevance to future Subjects/Lab/Project

| Sl. No | Semester | Subject/Lab/Project                                                                                            | Topics      |
|--------|----------|----------------------------------------------------------------------------------------------------------------|-------------|
| 01     | All Sem  | Understanding and apply to the design and development of mechatronic                                           | All modules |
|        |          | Required to complete innovative Mini projects and projects to achieve<br>greater effectiveness and efficiency. |             |

## 6.0 Relevance to Real World

| SL.No | Real World Mapping                                                                             |  |
|-------|------------------------------------------------------------------------------------------------|--|
| 01    | Resolving real time problems and issues through innovations and projects                       |  |
| 02    | Solving of complex engineering problems through innovations through multidisciplinary concepts |  |
| 03    | Business modeling and prototyping                                                              |  |

## 7.0 Gap Analysis and Mitigation

| Sl. No | Gap/s                                                               | Mitigation                                            |
|--------|---------------------------------------------------------------------|-------------------------------------------------------|
| 01     | Realization of multidisciplinary and material                       | Chalk & Talk, Presentations, Activities, Video shows, |
|        | properties                                                          | case studies, simulation, doing project/product etc.  |
| 02     | Realization of application and properties of materials in the class | Using e-resources and lab visits                      |
| 03     | Detailed information about chemistry and multidisciplinary concepts | Using e-resources and Class presentations             |
| 04     | Ability to resolve real-time problems with                          | Chalk & Talk, Presentations, Activities, Video        |



| Hirasudar institute of Lechnolody Nidasoshi                                         |                 |
|-------------------------------------------------------------------------------------|-----------------|
|                                                                                     | Course Plan     |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM         |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem |

available resources

shows, case studies, simulation, doing project/product etc.

## 8.0 Books Used and Recommended to Students

#### **Text Books**

1. D.J. Leo, Engineering Analysis of Smart Material Systems, Wiley 2007.

2. M. Addington, D.L. Schodek, Smart Materials and New Technologies in Architecture, Elsevier 2005.

3. Donald R. Askeland and Pradeep P. Fulay, Essentials of Materials Science and Engineering, 2009, Cengage Laerning.

#### References

- 1. Gandi, M.V. and Thompson, B.S., "Smart Materials and Structures," Chapman & Hall, UK, 1992,
- 2. Culshaw, B., "Smart Structures and Materials," Artech House, Inc., Norwood, USA, 1996.
- 3. Dimitris C. Lagoudas, Shape Memory Alloys: Modelling and Engineering Applications, Springer, 2008.
- 4. T. Yoneyama & S. Mayazaki, Shape memory alloys for biomedical applications, CRCPress, 200

## 9.0

### **Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended**

#### e-Resources, Pedagogy and Videos

| E-Resources: Web links, You lube links etc. | E-Resources: | Web links | , YouTube links etc. |
|---------------------------------------------|--------------|-----------|----------------------|
|---------------------------------------------|--------------|-----------|----------------------|

## Links to strengthen curriculum Pedagogy

|   | https://www.slideshare.net/sureshdaravath/shape-memory-alloys-71483726 |
|---|------------------------------------------------------------------------|
|   | https://padeepz.net/shape-memory-alloys/                               |
|   | https://www.youtube.com/watch?v=r-o-neQiT24                            |
|   | https://youtu.be/EKimWj8c-MQ?si=xt2IV2XroB-TGDCU                       |
|   | https://youtu.be/60G1KCe31DA?si=-fH9w8qqdcF6tA4i                       |
|   | https://youtu.be/7PKJ1TSCQWk?si=94xqFo17R6Gd6dpk                       |
|   | https://youtu.be/M4IDuktUaeI?si=31 nLc qIrO4Brwt                       |
|   | https://youtu.be/yR-6_IS9vts?si=NytO45sqMLpHUPGh                       |
|   | https://youtu.be/I7doX1zWGdw?si=Cc3GafcswLn-HvxE                       |
|   | https://youtu.be/5hYOxFFjZ-8?si=Vw4bGVDbBb6HKR46                       |
|   | https://youtu.be/I7doX1zWGdw?si=eese-szhufVq6pU6                       |
|   | https://youtu.be/ XABS0dR15o?si=w lp1UghKxbugPF5                       |
|   | https://youtu.be/4nbBAG-848c?si=GPQBzxnSeCjOYNhl                       |
|   | https://youtu.be/pnvpsl3bzwQ?si=7LT4KBfRU_1Y04II                       |
|   | https://youtu.be/INaPVsVZkR8?si=5L7Axd4M7UMZSIDW                       |
|   | https://youtu.be/ULbNZuZulPg?si=BKmQ69mMmVV_J2fi                       |
|   | https://youtu.be/p-rPep0-3cE?si=yC-m6ocf7OkFMI3p                       |
|   | https://youtu.be/xDp3PU8azmY?si=HDAEMX9awZIzcpMr                       |
|   | https://youtu.be/N_ijvkl51LM?si=4M0VGpAwO1X6_aMb                       |
|   | https://youtu.be/XnJbH9re2rl?si=fMa7FPwTGcmjecxx                       |
|   | https://youtu.be/2k2BLFFQssg?si=ydD6e0s6PkXiWBI9                       |
|   | https://youtu.be/AqWzqhDaoz0?si=ws0q9YWpIRmF4Txg                       |
|   | https://www.youtube.com/watch?v=w79wTb2zOQQ                            |
|   | https://www.youtube.com/watch?v=-XAIQQUcQk0                            |
|   | https://www.youtube.com/watch?v=FQ5Fe5I8vYU                            |
| ļ |                                                                        |

#### S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

III SEM

2023-24 Odd Sem

| https://www.youtube.com/watch?v=novE6nQrBmU                                                     |
|-------------------------------------------------------------------------------------------------|
| https://www.youtube.com/watch?v=HiI22ttaBf0                                                     |
| https://www.youtube.com/watch?v=YGqEgrcnfXc                                                     |
| https://www.youtube.com/watch?v=6PJuJ1-fp7c                                                     |
| SMS Current Applications Links                                                                  |
| https://youtu.be/T0w_r8hrt5Q?si=CA-kfloLc4CyKiSz                                                |
| https://youtu.be/C2CYCINVkCs?si=43Puhf-ifBMLKY7G                                                |
| https://youtu.be/fVTfSHEPnr8?si=uH6hdCcQRxt2cR2T                                                |
| https://youtu.be/xEIVrV9zxRY?si=OczXLNpdu-Rof3bZ                                                |
| https://youtu.be/tx6IVsErnj8?si=ITeg26itxUnTBnx                                                 |
| https://www.youtube.com/watch?v=mAAT5fvbl4Y                                                     |
| https://www.youtube.com/watch?v=NpxoUU1rLTs                                                     |
| https://www.youtube.com/watch?v=SIif11QOsRI                                                     |
| https://www.youtube.com/watch?v=UpjLULz9Aq8                                                     |
| https://www.youtube.com/watch?v=6hVJvXL3tMs                                                     |
| https://www.youtube.com/watch?v=4rwDgLMpk                                                       |
| https://www.youtube.com/watch?v=NTZDy8jkw68                                                     |
| https://www.youtube.com/watch?v=c4UtMI_xEQY                                                     |
| https://www.youtube.com/watch?v=66mpHrlk_Fk                                                     |
| https://www.youtube.com/watch?v=yD1Bt-jIwHw                                                     |
| Pedagogies                                                                                      |
| Models and shorts to realize stamic structures of different motorials and share transformations |
| wodels and charts to realise atomic structures of different materials and phase transformations |

Material Testing lab visit to realise the strengths and properties of different materials Models show the stimuli and responses of smart materials Application oriented pedagogical teaching in the class

#### 10.0 Magazines/Journals Used and Recommended to Students

| Sl.No | Magazines/Journals                   | website                                                     |
|-------|--------------------------------------|-------------------------------------------------------------|
| 1     | Elsevier                             | https://www.journals.elsevier.com                           |
| 2     | Journal of Composite Materials       | http://journals.sagepub.com                                 |
| 3     | Journal of Manufacturing Science and | http://manufacturingsgiongg.asmadigitalgollastion.asma.org  |
|       | Engineering                          | http://manufacturingscience.asinedigitalconection.asine.org |
| 4     | International Journal of Renewable   | http://www.jirer.org                                        |
|       | Energy Research (IJRER)              | http://www.ijici.org                                        |

#### 11.0 **Examination Note**

Methods of CIE need to be defined topic wise i.e.- Tests, MCQ, Quizzes, Seminar or micro project/Course Project, Term Paper)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The student has to obtain a minimum of 35% of maximum marks in SEE and a minimum of 40% of maximum marks in CIE. Semester End Exam (SEE) is conducted for 100 marks (3 hours' duration) and scaled down to 50 marks. Based on this grading will be awarded.

The student has to score a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

Mech. Engg. Dept. Course Plan III SEM

2023-24 Odd Sem

## 12.0 Course Delivery Plan

| Module | Content of Lecturer                                                                                                                                                                                                                                                                                                                                                        | Delivery                                              | Cumulative<br>Coverage |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------|
| 82     | Module-01:<br>Smart materials and structures: System intelligence-<br>components and classification of smart structures, common smart<br>materials and associated stimulus-response, Application areas of<br>smart systems                                                                                                                                                 | Chalk &<br>Talk, e-<br>resources<br>and<br>Activities | 20%                    |
| 83     | Module-02:<br>Electrically Activated Materials: Piezoelectricity,<br>Piezoresistivity, Ferroelectricity, Piezoelectric materials-<br>piezoelectric effect, Piezoceramics, Piezopolymers, Piezoelectric<br>materials as sensors, Actuators and bimorphs, nanocarbon tubes                                                                                                   | Chalk &<br>Talk, e-<br>resources<br>and<br>Activities | 40%                    |
| 84     | Module-03:<br>Thermally activated materials: Shape memory materials;<br>Shape memory alloys (SMAs), Classification –<br>Transformation - Ni-Ti Alloys, Shape memory effect, Martensitic<br>transformation, One way and two-way SME, binary and ternary<br>alloy systems, Functional properties of SMAs, Shape memory<br>ceramics –<br>Shape memory polymers – Applications | Chalk &<br>Talk, e-<br>resources<br>and<br>Activities | 60%                    |
| 85     | <b>Module-04:</b><br><b>Smart polymers</b> : Thermally responsive polymers, Electroactive polymers microgels, Synthesis, Properties and Applications, Protein-based smart polymers, pH-responsive and photo-responsive polymers, Self-assembly, Drug delivery using smart polymers                                                                                         | Chalk &<br>Talk, e-<br>resources<br>and<br>Activities | 80%                    |
| 86     | Module-05:Chemically Activated Materials - Chemical Gels - Self healing<br>materials Optically Activated Materials –Optically activated polymers - Azobenzene - Liquid Crystal,<br>Smart materials for space applications:<br>Elastic memory composites, Smart corrosion protection coatings,<br>Sensors, Actuators, Transducers                                           | Chalk &<br>Talk, e-<br>resources<br>and<br>Activities | 100%                   |

## **13.0** Continuous Internal Evaluation (CIE)

#### Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.



| S J P N Trust's                                                                     | Mech. Engg. Dept. |  |
|-------------------------------------------------------------------------------------|-------------------|--|
| HIRASUGAR INSTITUTE OT TECHNOLOGY, NICASOSNI                                        | Course Plan       |  |
| Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |  |
| Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |  |

#### **Continuous Internal Evaluation:**

• For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.

• The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.

• For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

## Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

| Module  | CIE Method        | Marks                                | Conduction                                        |
|---------|-------------------|--------------------------------------|---------------------------------------------------|
| 1,2,3,4 | 3 IA Tests        | Conduction for 50 marks & reduced    | I IA-5 <sup>th</sup> week, II IA-10 <sup>th</sup> |
| &5      | Duration:1 hour   | to 20 marks                          | week & III IA-15 <sup>th</sup> week               |
|         |                   |                                      |                                                   |
|         | 2 Assignments     | Each assignment evaluation for 25    | I Asignment-4 <sup>th</sup> week &II              |
|         |                   | marks & average of all assignments   | Assignment-9 <sup>th</sup> week                   |
|         |                   | shall be reduced to 10 marks         |                                                   |
|         | Report writing or | Each activity shall be evaluated for | 13 <sup>th</sup> week                             |
|         | presentation or   | 50 marks with proper rubrics and     |                                                   |
|         | Seminar or GD     | average of all evaluations shall be  |                                                   |
|         |                   | reduced to 20 marks                  |                                                   |

| Module | Торіс                           | CIE Method                              |
|--------|---------------------------------|-----------------------------------------|
| 1      | Smart materials and structures: | Internal Assessment Test (IAT), CCA: 1) |
|        |                                 | Assignment 2) Class Presentation        |
| 2      | Electrically Activated          | Internal Assessment Test (IAT), CCA: 1) |
|        | Materials                       | Assignment 2) Class Presentation        |
| 3      | Thermally activated materials   | Internal Assessment Test (IAT), CCA: 1) |
|        |                                 | Assignment 2) Class Presentation        |
| 4      | Smart polymers                  | Internal Assessment Test (IAT), CCA: 1) |
|        |                                 | Assignment 2) Class Presentation        |
| 5      | Chemically Activated            | Internal Assessment Test (IAT), CCA: 1) |
|        | Materials                       | Assignment 2) Class Presentation        |

#### **13.0** Semester End Examination (SEE)

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

• The question paper will have ten questions. Each question is set for 20 marks.

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questi **should have a mix of topics** under that module.

• The students have to answer 5 full questions, selecting one full question from each module.

• Marks scored shall be proportionally reduced to 50 marks.



#### S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

III SEM 2023-24 Odd Sem

## **15.0 QUESTION BANK**

#### Module-01: Smart Materials and Structures

| S.N. | Question                                                                                 |  |  |
|------|------------------------------------------------------------------------------------------|--|--|
| 1    | Explain the components of smart structure                                                |  |  |
| 2    | Explain how the components of smart structures are related and how they are classified?  |  |  |
| 3    | List the 6 common smart materials and also explain the stimulus response associated with |  |  |
|      | them.                                                                                    |  |  |
| 4    | List and explain the application areas of smart systems (At least 8 areas)               |  |  |
| 5    | Classify the smart materials                                                             |  |  |
| 6    | What are the good properties of smart materials                                          |  |  |
| 7    | Briefly explain the following smart materials with the help of applications              |  |  |
|      | i) Piezoelectric Materials                                                               |  |  |
|      | ii) Shape Memory Alloys                                                                  |  |  |
|      | iii) Thermo responsive Materials                                                         |  |  |
|      | iv) Smart Gels                                                                           |  |  |
| 8    | Briefly explain the following smart materials with the help of applications              |  |  |
|      | i) Electrostrictive Materials                                                            |  |  |
|      | ii) Magnetostrictive Materials                                                           |  |  |
|      | iii) Rheological Materials                                                               |  |  |
|      | iv) Fullerences                                                                          |  |  |
|      | v) Biometric Materials                                                                   |  |  |
|      | vi) Electrochromic Materials                                                             |  |  |
|      | Module-02: Electrically Activated Materials                                              |  |  |
| SN   | Question                                                                                 |  |  |

| S.N. | Question                                                                         |
|------|----------------------------------------------------------------------------------|
| 1    | Define piezoelectricity and explain the piezoelectric effect                     |
| 2    | Define and explain piezoresistivity                                              |
| 3    | Define and explain ferroelectricity                                              |
| 4    | List and explain atleast 6 applications of the following piezoelectric materials |
|      | i) Piezoceramics ii) Piezopolymers                                               |
| 5    | With the help of neat sketch explain the bimorph piezoelectric actuators         |
| 6    | With the help of neat sketch explain the piezoelectric Carbon Nano Tubes (CNTs)  |
| 7    | With the help of neat sketches explain any two piezoelectric actuators           |
| 8    | With the help of neat sketches explain any two piezoelectric sensors             |

#### Module-03: Thermally Activated Materials

| S.N. | Question                                                                                     |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|
| 1    | What do you mean by Shape Memory Alloys and List the properties of Nitinol (NiTi) or Shape   |  |  |
|      | Memory Alloys (SMAs)                                                                         |  |  |
| 2    | What do you mean by transformation temperature and with the help of graphs (Temperature Vs   |  |  |
|      | Load and Temperature Vs Fraction of Crystalline Structure ) differentiate the martensite and |  |  |
|      | austenite phase transformations of SMAs                                                      |  |  |
| 3    | With the help of figures and graphs differentiate the types of SMAs i) One way ii) Two way   |  |  |
| 4    | List the examples of SMAs                                                                    |  |  |
| 5    | Differentiate the following properties of the SMAs with the help of graphs and figures       |  |  |
|      | i) Shape Memory Effect                                                                       |  |  |
|      | ii) Pseudo elasticity or Super elasticity                                                    |  |  |
|      | iii) Hysteresis                                                                              |  |  |



#### S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

**Course Plan** 

d by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME III SEM 2023-24 Odd Sem

| 6 | What are the advantages and disadvantages of SMAs  |  |  |
|---|----------------------------------------------------|--|--|
| 7 | Explain the applications of SMAs                   |  |  |
| 8 | Differentiate the binary and ternary alloy systems |  |  |
|   |                                                    |  |  |

|      | Module-04: Smart Polymers                                                                    |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|
| S.N. | Question                                                                                     |  |  |
| 1    | What are the thermally responsive polymers and write their Synthesis, properties, advantages |  |  |
|      | and applications                                                                             |  |  |
| 2    | What are the electro active polymers and write their synthesis, properties, advantages and   |  |  |
|      | applications                                                                                 |  |  |
| 3    | Write a short note on following smart polymers:                                              |  |  |
|      | a) Drug delivery, b) Self assembly                                                           |  |  |
| 4    | What are the classification of Thermo responsive polymers                                    |  |  |
| 5    | What are the characteristics, applications and classification of the following polymers      |  |  |
|      | a) pH responsive polymers, b)Photo responsive polymers                                       |  |  |
| 6    | What are the protein based smart polymers and write their properties, advantages and         |  |  |
|      | applications                                                                                 |  |  |
| 7    | Write a short note on the followings                                                         |  |  |
|      | a) Microgels smart polymer, b) Viscoelasticity property of smart polymer                     |  |  |

#### **Module-05: Chemically Activated Materials**

| S.N. | Question                                                                                        |
|------|-------------------------------------------------------------------------------------------------|
| 1    | What are the self healing materials and write their design, properties, advantages and          |
|      | applications                                                                                    |
| 2    | Explain the methods of self healing                                                             |
| 3    | Write a short note on followings:                                                               |
|      | a) Microsphere embedment, b) Chemical gels                                                      |
| 4    | What are the optically activated materials/polymers or photo sensitive polymers and write their |
|      | properties, advantages and applications                                                         |
| 5    | Write a short note on the followings                                                            |
|      | a) Azobenzene b) Hydrogels                                                                      |
| 6    | What are the liquid crystels (LCs) and write their properties, advantages, classification and   |
|      | applications                                                                                    |
| 7    | Write a short note on the following smart materials for space applications:                     |
|      | a) Elastic Memory Composites (EMCs) b) Smart corrosion protection coatings                      |
| 8    | Write a short note on the following smart materials for space applications:                     |
|      | a) Actuators, b) Sensors, c) Transducers                                                        |

## 16.0 University Result

| VTU Examination                  | S⁺ | S | Α | В | С | D | E | F | % Passing |
|----------------------------------|----|---|---|---|---|---|---|---|-----------|
| New course introduced in the VTU |    |   |   |   |   |   |   |   |           |
| 2022 Scheme of study             |    |   |   |   |   |   |   |   |           |

| Prepared by       | Checked by         |     |           |
|-------------------|--------------------|-----|-----------|
| asp               | Ø                  | asp | Ser       |
| Dr.S.N.Topannavar | Module Coordinator | HOD | Principal |


# S J P N Trust's Mech. Engg. Dept. Hirasugar Institute of Technology, Nidasoshi Course Plan Inculcating Values, Promoting Prosperity Ill SEM Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Ill SEM Accredited at 'A' Grade by NAAC 2023-24 Odd Sem

| Subject Title                | Social Connect and Responsibility |                             |    |  |
|------------------------------|-----------------------------------|-----------------------------|----|--|
| Subject Code                 | 21UH36/ 22BSCk307                 | Activity & Reports (10) x 5 | 50 |  |
| Number of Lecture Hrs/Week / | 01(P)                             | Exam Marks (appearing for)  | 50 |  |
| Total Number of Lecture Hrs  | 15 Lab Slots                      | Exam Hours                  | 03 |  |
| CREDITS – 01                 |                                   |                             |    |  |

| FACULTY DETAILS:               |                              |                                |
|--------------------------------|------------------------------|--------------------------------|
| Name: S.B. Sarawadi            | <b>Designation: lecturer</b> | Experience:23 years            |
| No. of times course taught: 00 | Sp                           | ecialization: VLSI Design & ES |

# **1.0** Prerequisite Subjects:

| Sl. No | Branch                                               | Semester | Subject                |
|--------|------------------------------------------------------|----------|------------------------|
| 01     | Students should have the knowledge of basic subjects | 1 & 2    | Universal Human Values |

# 2.0 Course Objectives

- Enable the student to do a deep drive into societal challenges being addressed by NGO(s), social enterprises & The government and build solutions to alleviate these complex social problems through immersion, design & technology.
- Provide a formal platform for students to communicate and connect with their surroundings.

#### **Course Outcomes**

3.0

4.0

Having successfully completed this course, the student will be able to

| CO's  | Course Outcome                                                                                                     | Cognitive<br>Level | PO's |
|-------|--------------------------------------------------------------------------------------------------------------------|--------------------|------|
| 206.1 | Develop an eco-friendly relationship for saving the natural resources and preservation of nature.                  | U                  |      |
| 206.2 | Develop multicultural awareness and appreciation for Music and Drama by exposing learners to various forms of Art. | U                  |      |
| 206.3 | Understand the concept of agricultural operations.                                                                 | U                  |      |
| 206.4 | Develop an eco-friendly relationship for saving the natural resources and preservation of nature.                  | U                  |      |
| 206.5 | Describe the regional culinary practices and its importance in day-to-day life                                     | U                  |      |
|       | Total Hours of instruction                                                                                         |                    | 15   |

Course Content



#### S J P N Trust's **Hirasugar Institute of Technology, Nidasoshi** *Inculcating Values, Promoting Prosperity* Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Mech. Engg. Dept. Course Plan

proved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

III SEM 2023-24 Odd Sem

| Practical/Theory                                                                                                                                                                                                                                                                                                |                   |                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|--|--|
| Modules                                                                                                                                                                                                                                                                                                         | Teaching<br>Hours | Bloom's<br>Taxonomy<br>(RBT) level |  |  |
| Module 1                                                                                                                                                                                                                                                                                                        |                   |                                    |  |  |
| <b>Plantation and adoption of a tree:</b> Plantation of a tree that will be adopted for four years by a group of B.Tech. students. They will also make an excerpt either as a documentary or a photoblog describing the plant's origin, its usage in daily life, and its appearance in folklore and literature. | 03                | L1                                 |  |  |
| Module -2                                                                                                                                                                                                                                                                                                       |                   |                                    |  |  |
| <b>Heritage walk and crafts corner:</b> Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photoblog and documentary on evolution and practice of various craft forms.                                          | 03                | L1                                 |  |  |
| Module-3                                                                                                                                                                                                                                                                                                        |                   |                                    |  |  |
| <b>Organic farming and waste management:</b> usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus.                                                                                                                                                     | 03                | Ll                                 |  |  |
| Module-4                                                                                                                                                                                                                                                                                                        |                   |                                    |  |  |
| Water Conservation: knowing the present practices in the surrounding villages and implementation in the campus, documentary or photo blog presenting the current practices.                                                                                                                                     | 03                | Ll                                 |  |  |
| Module-5                                                                                                                                                                                                                                                                                                        |                   |                                    |  |  |
| <b>Food Walk:</b> City's culinary practices, food lore, and indigenous materials of the region used in cooking.                                                                                                                                                                                                 | 03                | L1                                 |  |  |

#### **Relevance to future subjects**

| Sl. No | Semester | Subject                | Topics              |
|--------|----------|------------------------|---------------------|
| 01     | I/II     | Universal Human Values | Social Connectivity |

6.0 Relevance to Real World

| SL.No | Real World Mapping       |
|-------|--------------------------|
| 01    | Connecting to Nature and |

## 7.0 Books Used and Recommended to Students

#### **Reference Books**

5.0

- 1. Universal Human Values and Professional Ethics, Dr. Ritu Soryan, 2022
- 2. Universal Human Values and Professional Ethics S.K. Kataria

# 8.0 Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended



#### S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

**Course Plan** III SEM

Mech. Engg. Dept.

2023-24 Odd Sem

#### Website and Internet Contents References

15) https://nptel.co.in

16) http://www.uhv.org.in/uhv-1

#### **Examination Note** 9.0

#### Assessment Details both (CIE and SEE):

#### **Continuous Internal Evaluation (CIE)**

After completion of, the social connect, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

Marks allotted for the diary are out of 50. Planning and scheduling the social connect Information/Data collected during the social connect Analysis of the information/data and report writing

Considering all above points allotting the marks as mentioned below-

| Excellent              | 80 to 100 |
|------------------------|-----------|
| Good                   | 60 to 79  |
| Satisfactory           | 40 to 59  |
| Unsatisfactoryand fail | <39       |

#### Semester End Examination (SEE)

This Jamming session will be conducted at the end of the course for 50 marks

Jamming session includes -Platform to connect to others. Share the stories with others. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art painting, and fine art. Faculty mentor has to design the evaluation system for the Jamming session.

#### 10.0 **Course Delivery Plan**

| Module No.                           | Session<br>No. | Content of Lecture                                                                                                        | Teaching<br>Method | %<br>Portion<br>Covered |
|--------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
|                                      | 1              | Plantation in campus                                                                                                      | Activity           |                         |
| 1. Plantation and adoption of a tree | 2              | Excerpt either as a documentary or a photoblog describing the plant's origin, its usage in daily life,                    | Activity           | 20                      |
|                                      | 3              | Its appearance in folklore and literature.                                                                                | Activity           |                         |
|                                      | 4              | Visit Heritage place near to college                                                                                      | Activity           |                         |
| 2. Heritage walk and crafts corner   | 5              | Knowing the history and culture of<br>the city, connecting to people around<br>through their history, knowing the<br>city | Activity           | 20                      |
|                                      | 6              | Its craftsman, photoblog and documentary on evolution and practice of various craft forms.                                | Activity           |                         |
| 3. Organic farming and               | 7              | Visiting nearby Village                                                                                                   | Activity           |                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S J P N Trust's<br>Hirasugar Institute of Technology, Nidasoshi                     | Mech. Engg. Dept.<br>Course Plan |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|--|
| Sale of the second seco | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem                  |  |

| waste management      | 8  | Usefulness of organic farming, wet waste management in neighboring villages.                    | Activity | 20 |
|-----------------------|----|-------------------------------------------------------------------------------------------------|----------|----|
|                       | 9  | Implementation in the campus                                                                    | Activity |    |
| 4. Water Conservation | 10 | Visiting nearby Village                                                                         | Activity |    |
|                       | 11 | Knowing the present practices in the surrounding villages.                                      | Activity | 20 |
|                       | 12 | Implementation in the campus,<br>documentary or photo blog<br>presenting the current practices. | Activity |    |
| 5. Food Walk          | 13 | Visiting food streets. Or food corners                                                          | Activity | 20 |
|                       | 14 | City's culinary practices, food lore                                                            | Activity |    |
|                       | 15 | indigenous materials of the region used in cooking.                                             | Activity |    |

# **11.0** Assignments, Pop Quiz, Mini Project, Seminars

| Sl.No. | Title                                                         | Outcome expected                                                      | Allied<br>study                | Week<br>No. | Individual<br>/ Group<br>activity |
|--------|---------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|-------------|-----------------------------------|
| 1      | Activity Report 1: Plantation and adoption of a tree          | Students carry the<br>activity and will<br>prepare for Final<br>Exam. | Module-1<br>of the<br>syllabus | 3           | Group<br>Activity                 |
| 2      | Activity Report 2: Heritage walk and crafts corner            | Students carry the<br>activity and will<br>prepare for Final<br>Exam. | Module-2<br>of the<br>syllabus | 6           | Group<br>Activity                 |
| 3      | Activity Report 3: Organic<br>farming and waste<br>management | Students carry the<br>activity and will<br>prepare for Final<br>Exam. | Module-3<br>of the<br>syllabus | 9           | Group<br>Activity                 |
| 4      | Activity Report 4: Water<br>Conservation                      | Students carry the<br>activity and will<br>prepare for Final<br>Exam. | Module-4<br>of the<br>syllabus | 12          | Group<br>Activity                 |
| 5      | Activity Report 5: Food<br>Walk                               | Students carry the<br>activity and will<br>prepare for Final<br>Exam. | Module-5<br>of the<br>syllabus | 15          | Group<br>Activity                 |

# **12.0** University Result

NEW SCHME



# S J P N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

III SEM 2023-24 Odd Sem

| Subject Title           | ADVANCED PYTHON PROGRAMMING |            |              |
|-------------------------|-----------------------------|------------|--------------|
| Subject Code            | BME358A                     | IA Marks   | 50           |
| Practical Hrs / Week    | 0:0:2:0                     | Exam Marks | 50           |
| Total Hours of pedagogy | 16                          | Exam Hours | 02           |
|                         |                             |            | CREDITS – 01 |

#### FACULTY DETAILS:

| Name: Dr. K. M. Akkoli             | Designation: Associate | Professor                 | Experience: 20 Years |
|------------------------------------|------------------------|---------------------------|----------------------|
| No. of times course taught: 02 Tin | nes                    | Specialization: Thermal P | ower Engineering     |

# 1.0 Prerequisite Subjects:

| Sl. No | Branch                 | Semester | Subject     |
|--------|------------------------|----------|-------------|
| 01     | Mechanical Engineering | PUC      | Mathematics |
| 02     | Mechanical Engineering | I/II     | Mathematics |

# 2.0 Course Objectives

- 1. To understand the problem solving approaches.
- 2. To learn the basic programming constructs in Python.
- 3. To practice various computing strategies for Python-based solutions to real world problems.
- 4. To use Python data structures lists, tuples, dictionaries.
- 5. To do input/output with files in Python.

## 3.0 Course Outcomes

The student, after successful completion of the course, will be able to

| СО     | Course Outcome                                                 | Cognitive<br>Level | POs      |
|--------|----------------------------------------------------------------|--------------------|----------|
| C211.1 | Develop algorithmic solutions to simple computational problems | U                  | 1,2,7,12 |
| C211.2 | Develop and execute simple Python programs.                    | А                  | 1,2,7,12 |
| C211.3 | Use functions to decompose a Python program.                   | А                  | 1,2,7,12 |
| C211.4 | Process compound data using Python data structures             | U                  | 1,2,7,12 |
| C211.5 | Utilize Python packages in developing software applications    | А                  | 1,2,7,12 |
|        | Total Hours of instruction                                     |                    | 15       |

## 4.0 Course Content

1. Demonstrate following functions/methods which operates on strings in Python with suitable examples: i) len() ii) strip() iii) rstrip() iv) lstrip() v) find() vi) rfind() vii) index() viii) rindex(),ix) count() x) replace() xi) split() xii) join() xiii) upper() xiv) lower() xv) swapcase() xvi) title() xvii) capitalize() xviii) startswith() xix) endswith()

- 2. Implementing programs using Functions. (Factorial, largest number in a list, area of shape).
- 3. NESTED LISTS: Write a program to read a 3 X 3 matrix and find the transpose, addition, subtraction, multiplication of two 3 X 3 matrices, check whether two given 3 X 3 matrices are identical or not.
- 4. Implementing programs using Strings. (Reverse, palindrome, character count, replacing characters). Real time applications using sets and Dictionaries

|                                 | e of lechnology, Nidasoshi                                  | Course Plan     |
|---------------------------------|-------------------------------------------------------------|-----------------|
| Approved by AICTE, Recognized b | by Govt.of Karnataka and Affiliated to VTU Belagavi.        | III SEM         |
| Accredite<br>Programmes Accred  | ed at 'A' Grade by NAAC<br>lited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem |

| 5    | Scientific problems using Conditionals and Iterative loops. (Number series and different Patterns).        |
|------|------------------------------------------------------------------------------------------------------------|
|      | Numpy Library: Linear Algebra                                                                              |
|      | a) Write a python program to find rank, determinant, and trace of an array.                                |
|      | b) Write a python program to find eigen values of matrices                                                 |
|      | d) Write a python program to solve a linear matrix equation, or system of linear scalar equations.         |
| 7    | Graphics:                                                                                                  |
|      | • Consider turtle object. Write functions to draw triangle, rectangle, polygon, circle and sphere. Use     |
|      | object oriented approach.                                                                                  |
|      | • Design a Python program using the Turtle graphics library to construct a turtle bar chart representing   |
|      | the grades obtained by N students read from a file categorizing them into distinction, first class, second |
|      | class, third class and failed.                                                                             |
| 8    | Create a colour images using NumPy in Python.                                                              |
| Demo | nstration Experiments ( For CIE )                                                                          |
| 9    | Write a python program to implement Pandas Series with labels.                                             |
| 10   | Implementing real-time/technical applications using File handling. (copy from one file to another, word    |
|      | count, longest word).                                                                                      |
| 11   | Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's     |
|      | age validity, student mark range validation).                                                              |
| 12   | Developing a game activity using Pygame like bouncing ball, car race etc.                                  |
|      |                                                                                                            |

#### 5.0 Relevance to future subjects

| SL. No | Semester | Subject                    | Topics / Relevance       |
|--------|----------|----------------------------|--------------------------|
| 01     | VIII     | Project work & Application | AI & ML, CNC Programming |

#### 6.0 Relevance to Real World

| SL. No | Real World Mapping            |
|--------|-------------------------------|
| 01     | Awareness of writing program. |
| 02     | Logic development.            |
| 03     | Knowledge AI and ML.          |

#### 7.0 Books Used and Recommended to Students

#### **Reference Books**

1. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.

• John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021

• Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.

• Eric Matthes, "Python Crash Course, A Hands – on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.

• Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

#### 8.0 Relevant Websites (Reputed Universities and Others) for Notes/Animation/Videos Recommended

#### Website and Internet Contents References

1.http://www.nptel.ac.in

|     | S J P N Trust's                                                                     | Mech. Engg. Dept. |
|-----|-------------------------------------------------------------------------------------|-------------------|
| 000 |                                                                                     | Course Plan       |
|     | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM           |
|     | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem   |

| 9.0   | 9.0 Magazines/Journals Used and Recommended to Students |                                                                        |  |
|-------|---------------------------------------------------------|------------------------------------------------------------------------|--|
| Sl.No | Magazines/Journals                                      | website                                                                |  |
| 1     | Cambridge Journals                                      | https://www.cambridge.org/core/journals/journal-of-fluid-<br>mechanics |  |
| 2     | Springer                                                | www.springer.com > Home > Engineering > Mechanics                      |  |
| 3     | Iop-Science                                             | iopscience.iop.org/journal/1873-7005                                   |  |

#### **10.0** Examination Note

#### Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

#### Semester End Evaluation (SEE):

• SEE marks for the practical course are 50 Marks.

• SEE shall be conducted jointly by the two examiners of the same institute; examiners are appointed by the Head of the Institute.

• The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedules mentioned in the academic calendar of the University.

• All laboratory experiments are to be included for practical examination.

• (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.

• Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.

- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the

examiners)

• Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero.

The minimum duration of SEE is 02 hours

#### 11.0 Course Delivery Plan

| Expt<br>No | Lecture /<br>Practical<br>No | Name of the Experiment                                                                                                                                                                                                                                                                                                                                                           | % Of<br>Portion |
|------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1          | 1                            | Demonstrate following functions/methods which operates on strings in Python<br>with suitable examples: i) len() ii) strip() iii) rstrip() iv) lstrip() v) find() vi)<br>rfind() vii) index() viii) rindex(),ix) count() x) replace() xi) split() xii) join()<br>xiii) upper() xiv) lower() xv) swapcase() xvi) title() xvii) capitalize() xviii)<br>startswith() xix) endswith() | 100             |
| 2          | 2                            | Implementing programs using Functions. (Factorial, largest number in a list, area of shape).                                                                                                                                                                                                                                                                                     | 100             |
| 3          | 3                            | NESTED LISTS: Write a program to read a 3 X 3 matrix and find the transpose, addition, subtraction, multiplication of two 3 X 3 matrices, check whether two given 3 X 3 matrices are identical or not.                                                                                                                                                                           |                 |

|           | S J P N Trust's<br>Hirasugar Institute of Technology, Nidasoshi                     | Mech. Engg. Dept.<br>Course Plan |
|-----------|-------------------------------------------------------------------------------------|----------------------------------|
| C A C     | Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi.  | III SEM                          |
| LEVEN UND | Accredited at 'A' Grade by NAAC<br>Programmes Accredited by NBA: CSE, ECE, EEE & ME | 2023-24 Odd Sem                  |

| 4   | 4            | Implementing programs using Strings. (Reverse, palindrome, character count, replacing characters). Real time applications using sets and Dictionaries                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 5   | 5            | Scientific problems using Conditionals and Iterative loops. (Number series and different Patterns).                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 6   | 6            | <ul> <li>Numpy Library: Linear Algebra</li> <li>a) Write a python program to find rank, determinant, and trace of an array.</li> <li>b) Write a python program to find eigen values of matrices</li> <li>d) Write a python program to solve a linear matrix equation, or system of linear scalar equations.</li> </ul>                                                                                                          |  |  |  |  |  |
| 7   | 7            | <ul> <li>Graphics:</li> <li>Consider turtle object. Write functions to draw triangle, rectangle, polygon, circle and sphere. Use object oriented approach.</li> <li>Design a Python program using the Turtle graphics library to construct a turtle bar chart representing the grades obtained by N students read from a file categorizing them into distinction, first class, second class, third class and failed.</li> </ul> |  |  |  |  |  |
| 8   | 8            | Create a colour images using NumPy in Python.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Dem | onstration l | Experiments (For CIE)                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 9   | 9            | Write a python program to implement Pandas Series with labels.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 10  | 10           | Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word).                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 11  | 11           | Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation).                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 12  | 12           | Developing a game activity using Pygame like bouncing ball, car race etc.                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

#### **12.0 QUESTION BANK**

- Q1.What is Python?
- Q2. Python is an interpreted language. Explain
- Q3. What is the difference between lists and tuples?
- Q4. What is pep 8?
- Q5. What are the Key features of Python?
- Q6. How is Memory managed in Python?
- Q7. What is PYTHONPATH?
- Q8. What are Python Modules?
- Q9. What are python namespaces?
- Q10. Explain Inheritance in Python with an example?

#### 13.0 University Result

| Examination | S+ | S | A | B | С | D | Е | % Passing |
|-------------|----|---|---|---|---|---|---|-----------|
|             |    |   |   |   |   |   |   |           |

| Prepared by | Checked by |      |     |
|-------------|------------|------|-----|
| -tutted     | More.      | John | Jar |