

Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC Course Outcome

EEE

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

## List of Course Outcomes for All Courses

# Course Outcomes for 3<sup>rd</sup> Semester

Sub: Transform Calculus, Fourier Series and Numerical Techniques Sub.

Sub. Code: 18MAT31

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C201.1 | Use Laplace transform and inverse Laplace transform in solving differential/ integral equationarising in network analysis, control systems and other fields of engineering. |
| C201.2 | Demonstrate Fourier series to study the behavior of periodic functions and their applications insystem communications, digital signal processing and field theory.          |
| C201.3 | Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arisingin wave and heat propagation, signals and systems.                          |
| C201.4 | Solve first and second order ordinary differential equations arising in engineering problemsusing single step and multistep numerical methods.                              |
| C201.5 | Determine the externals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.                        |

Sub: Electric Circuit Analysis

## Sub. Code: 18EE32

| CO     | Description                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C202.1 | Explain the basic concepts, basic laws and methods of analysis of DC and AC networks and reduce the complexity of network using source shifting, source transformation and network |
|        | reduction using transformations.                                                                                                                                                   |
| C202.2 | Analyze complex electric circuits using network theorems.                                                                                                                          |
| C202.3 | Discuss resonance in series and parallel circuits and also the importance of initial conditions                                                                                    |
|        | and their evaluation.                                                                                                                                                              |
| C202.4 | Analyze typical waveforms using Laplace transformation.                                                                                                                            |
| C202.5 | Discuss unbalanced three phase systems and also evaluate the performance of two port                                                                                               |
|        | networks.                                                                                                                                                                          |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE NAAC

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Transformers and Generator

Sub. Code: 18EE33

After successful completion of the course, the student will be able to:

| CO     | Description                                                                           |
|--------|---------------------------------------------------------------------------------------|
| C203.1 | Understand the construction and operation of 1-phase, 3-Phase transformers            |
|        | and Autotransformer.                                                                  |
| C203.2 | Analyze the performance of transformers by polarity test, Sumpner's Test, phase       |
|        | conversion, 3-phase connection, and parallel operation.                               |
| C203.3 | Understand the construction and working of AC and DC Generators.                      |
| C203.4 | Determine the regulation of AC Generator by EMF, MMF, and ZPF Methods.                |
| C203.5 | Analyze the performance of synchronous generators through power angle characteristics |
|        | (salient and non salient pole), power angle diagram & reluctance power.               |

### Sub: Analog Electronic Circuits

### Sub. Code: 18EE34

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                       |
|--------|---------------------------------------------------------------------------------------------------|
| C204.1 | Obtain the output characteristics of clipper and clamper circuits.                                |
| C204.2 | Design and compare biasing circuits for transistor amplifiers & explain the transistor switching. |
| C204.3 | Explain the concept of feedback, its types and design of feedback circuits.                       |
| C204.4 | Design and analyze the power amplifier circuits and oscillators for different frequencies.        |
| C204.5 | Design and analysis of FET and MOSFET amplifiers.                                                 |

### Sub: Digital System Design

### Sub. Code: 18EE35

After successful completion of the course, the student will be able to:

| CO     | Description                                                                              |
|--------|------------------------------------------------------------------------------------------|
| C205.1 | Develop simplified switching equation using Karnaugh Maps and QuineMcClusky techniques.  |
| C205.2 | Design Multiplexer, Encoder, Decoder, Adder, Subtractors and Comparator as digital       |
|        | combinational control circuits.                                                          |
| C205.3 | Design flip flops, counters, shift registers as sequential control circuits.             |
| C205.4 | Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits. |
| C205.5 | Explain the functioning of Read only and Read/Write Memories, Programmable ROM,          |
|        | EPROM and Flash memory.                                                                  |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Electrical & Electronic Measurements

Sub. Code: 18EE36

After successful completion of the course, the student will be able to:

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C206.1 | Explain the measurement of resistance, inductance and capacitance using bridges and       |
|        | determine earth resistance.                                                               |
| C206.2 | Discuss adjustments, calibration and errors in energy meters and Explain the construction |
|        | and operation of power factor meter, frequency meter and phase sequence indicator.        |
| C206.3 | Explain measurements magnetic parameters; iron loss, air gap flux, field strength and     |
|        | Explain the methods of extending the range of instruments and instrument transformers.    |
| C206.4 | Discuss electronic and digital instruments used in measurements.                          |
| C206.5 | Discuss display and recording devices used in measurements.                               |

### Sub: Electrical Machines Laboratory-I

Sub. Code: 18EEL37

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                 |
|--------|---------------------------------------------------------------------------------------------|
| C207.1 | Evaluate the performance of transformers from the test data obtained.                       |
| C207.2 | Connect and operate two single phase transformers of different KVA rating in parallel.      |
| C207.3 | Connect single phase transformers for three phase operation and phase conversion.           |
| C207.4 | Compute the voltage regulation of synchronous generator using the test data obtained in the |
| C207.5 | Evaluate the performance of synchronous generators from the test data and assess the        |
|        | performance of synchronous generator connected to infinite bus.                             |

### Sub: Electronics Laboratory-I

Sub. Code: 18EEL38

### After successful completion of the course, the student will be able to:

| CO     | Description                                                                          |
|--------|--------------------------------------------------------------------------------------|
| C208.1 | Design and test rectifier circuits with and without capacitor filters.               |
| C208.2 | Determine h-parameter models of transistor for all modes.                            |
| C208.3 | Design and test BJT and FET amplifier and oscillator circuits.                       |
| C208.4 | Realize Boolean expressions, adders and subtractors using gates.                     |
| C208.5 | Design and test Ring counter/Johnson counter, Sequence generator and 3 bit counters. |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE NAAC

**Course Outcome** 

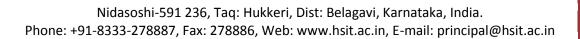
2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **Course Outcomes for 4<sup>th</sup> Semester**

Sub: Complex Analysis, Probability And Statistical Methods

Sub. Code: 18MAT41


After successful completion of the course, the student will be able to:

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C213.1 | Use the concepts of analytic function and complex potentials to solve the problems arising |
|        | in Electromagnetic field theory.                                                           |
| C213.2 | Utilize conformal transformation and complex integral arising in aerofoil theory, fluid    |
|        | flow Visualization and image processing.                                                   |
| C213.3 | Apply discrete and continuous probability distributions in analyzing the probability       |
| C215.5 | models arising in engineering field.                                                       |
| C213.4 | Make use of the correlation and regression analysis to fit a suitable mathematical model   |
|        | for the Statistical data.                                                                  |
| C213.5 | Construct joint probability distributions and demonstrate the validity of testing the      |
|        | hypothesis.                                                                                |

## Sub: Power Generation & Economics

Sub. Code: 18EE42

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C214.1 | Describe the working of hydroelectric, power plant and state functions of major equipment |
|        | of the power plant.                                                                       |
| C214.2 | Describe the working of steam power plant and state functions of major equipment of       |
|        | power plant.                                                                              |
| C214.3 | Describe the working of Nuclear power plant and explain classification of Nuclear         |
|        | reactors.                                                                                 |
| C214.4 | Classify various substations and explain the importance of grounding.                     |
| C214.5 | Understand the economic aspects of power system operation, its effects and importance of  |
|        | power factor improvement.                                                                 |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME

# NAAC Course Outcome

EEE

2021-22

# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Transmission & Distribution

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                                                                                                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C215.1 | Explain the importance of HVAC, EHVAC, UHVAC and HVDC transmission. identify various types of conductors, Calculate sag for supports at equal & unequal levels. Explain properties of insulators, calculate string efficiency, explain various methods used to improve string efficiency. |
| C215.2 | Calculate inductance, capacitance & of 1-ph & 3- ph transmission lines, define GMD & GMR.                                                                                                                                                                                                 |
| C215.3 | Calculate the parameters of the transmission line for different configurations and assess<br>the performance of the line.                                                                                                                                                                 |
| C215.4 | Explain the phenomenon of Corona, advantages & disadvantages of Corona. Explain the construction & use of underground cables, explain the grading of cables.                                                                                                                              |
| C215.5 | Explain various types of distribution systems, reliability and quality of distribution system.                                                                                                                                                                                            |

# Sub: Electric Motors

Sub. Code: 18EE44

Sub. Code: 18EE43

| CO     | Description                                                                          |
|--------|--------------------------------------------------------------------------------------|
| C216.1 | Explain the constructional features, characteristics, speed control of DC Motors and |
|        | condition for maximum efficiency.                                                    |
| C216.2 | Demonstrate & explain the methods of testing of DC machines.                         |
| C216.3 | Explain the performance of Three Phase induction motor.                              |
| C216.4 | Explain starting methods and speed control of induction motor by a suitable method & |
|        | Explain the construction and operation of single phase induction & Motors.           |
| C216.5 | Explain the construction, operation and performance of synchronous motor. Discuss    |
|        | construction and operation of special motors; Universal motor, AC servomotor, Linear |
|        | induction motor and stepper motor.                                                   |





Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

**Sub:** Electromagnetic Field Theory

Sub. Code: 18EE45

After successful completion of the course, the student will be able to:

| СО     | Description                                                                             |
|--------|-----------------------------------------------------------------------------------------|
| C217.1 | Use different coordinate systems, coulomb's Law and Gauss Law for the evaluation of     |
|        | electric fields produced by different charge configurations.                            |
| C217.2 | Calculate the energy and potential due to a system of charges & Explain the behavior of |
|        | electric field across boundary conditions.                                              |
| C217.3 | Explain Poison's, Laplace equations and behavior of steady magnetic field.              |
| C217.4 | Explain the behavior of magnetic fields and magnetic materials.                         |
| C217.5 | Assess time varying fields and propagation of waves in different media.                 |

Sub: Operational Amplifiers & Linear IC's

Sub. Code: 18EE46

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C218.1 | Describe the characteristics of ideal and practical operational `amplifier.                |
| C218.2 | Design filters and voltage regulators using Op-amp.                                        |
| C218.3 | Demonstrate the application of Linear ICs as comparators and rectifiers.                   |
| C218.4 | Analyze voltage regulators for given specification using op-amp and IC voltage regulators. |
| C218.5 | Summarize the basics of PLL and Timer.                                                     |

**Sub:** Electrical Machines Laboratory -2

Sub. Code: 18EEL47

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C219.1 | Test dc machines to determine their characteristics.                                       |
| C219.2 | Change the speed of dc motor by selecting suitable method.                                 |
| C219.3 | Pre-determine the performance characteristics of dc machines by conducting suitable tests. |
| C219.4 | Assess the performance of single phase and three phase induction motor by conducting load  |
|        | test.                                                                                      |
| C219.5 | Experiment with induction motor to pre-determine the performance characteristics.          |
| C219.5 | Test on synchronous motor to draw the performance curves.                                  |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE

NAAC

**Course Outcome** 

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

**Sub:** Operational Amplifier & Linear IC's Laboratory

Sub. Code: 18EEL48

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C220.1 | To conduct experiment to determine the characteristic parameters of Op-Amp.               |
| C220.2 | To design test the OP-Amp as Amplifier, Adder, Subtractor, Differentiator and Integrator. |
| C220.3 | To design test the OP-Amp as oscillators and filters.                                     |
| C220.4 | To Design and study of Linear IC's as multivibrator power supplies.                       |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC Course Outcome

EEE

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **Course Outcomes for 5<sup>th</sup> Semester**

Sub: Management and Entrepreneurship

Sub. Code: 18EE51

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C301.1 | Explain the field of management, task of the manager, planning and steps in decision                                                                                        |
|        | making.                                                                                                                                                                     |
| C301.2 | Discuss the structure of organization, importance of staffing, leadership styles, modes of communication techniques of coordination and importance of managerial control in |
|        | business.                                                                                                                                                                   |
| C301.3 | Explain the concepts of entrepreneurship and a businessman's social responsibilities                                                                                        |
|        | towards different groups.                                                                                                                                                   |
| C301.4 | Explain the social responsibility of business and leadership and discuss role of SSI's in the                                                                               |
|        | development of country and state/central level institutions/agencies supporting business                                                                                    |
|        | enterprises.                                                                                                                                                                |
| C301.5 | Discuss the concepts of project management, capital budgeting, project feasibility studies,                                                                                 |
|        | need for project report and new control techniques                                                                                                                          |

### Sub: Microcontroller

## Sub. Code: 18EE52

| CO     | Description                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| C302.1 | Discuss the history, features, internal architecture and addressing modes of 8051.                                             |
| C302.2 | Write assembly level program using arithmetic, logic, jump and call instructions.                                              |
| C302.3 | Develop 8051C programs for time delay, I/O, logic, data conversion/serialization and timer operation.                          |
| C302.4 | Develop 8051 serial port and interrupt programming in assembly and C.                                                          |
| C302.5 | Interface 8051 with real-world devices such as LCD's, keyboards, ADC, DAC chips, sensors, motor control devices and with 8255. |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

Course Outcome

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Power Electronics

Sub. Code: 18EE53

After successful completion of the course, the student will be able to:

| СО     | Description                                                                                  |
|--------|----------------------------------------------------------------------------------------------|
| C303.1 | Explain application areas of power electronics, types of power electronic circuits and       |
|        | switches, their characteristics and specifications.                                          |
| C303.2 | Explain different types of power diodes, its effects on RL circuits and operation and        |
|        | analysis of single phase diode rectifier circuits.                                           |
| C303.3 | Explain steady state, switching characteristics and gate control requirements of different   |
|        | power transistors and their comparison.                                                      |
| C303.4 | Discuss different types of thyristors, their operation, characteristics and firing circuits. |
| C303.5 | Discuss the principle of operation and analysis of controlled rectifiers, AC voltage         |
|        | controllers, DC – DC and DC –AC converters.                                                  |

Sub: Signals and Systems

### Sub. Code: 18EE54

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C304.1 | Explain the classifications, basic operations of signals and properties of systems.        |
| C304.2 | Apply convolution in both continuous and discrete domain for the analysis of systems given |
|        | impulse response of a system.                                                              |
| C304.3 | Solve the continuous time and discrete time systems by various methods and their           |
|        | representation by block diagram.                                                           |
| C304.4 | Perform Fourier analysis for continuous and discrete time, linear time invariant systems.  |
| C304.5 | Apply Z-transform and properties of Z transform for the analysis of discrete time systems. |

## Sub: Electrical Machine Design

## Sub. Code: 18EE55

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C305.1 | Discuss design factors, limitations, modern trends in design, manufacturing of electrical |
|        | machines and properties of materials used in the electrical machines.                     |
| C305.2 | Design different parts of DC machines.                                                    |
| C305.3 | Design single phase and three phase transformers.                                         |
| C305.4 | Design three phase Induction motors.                                                      |
| C305.5 | Design three phase Synchronous machines.                                                  |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: High Voltage Engineering

Sub. Code: 18EE56

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                     |
|--------|-------------------------------------------------------------------------------------------------|
| C306.1 | Examine conduction and breakdown phenomenon in gases, liquid and solid dielectrics.             |
| C306.2 | Illustrate various techniques of generation of different forms of high voltages and currents    |
| C306.3 | Outline measurement techniques for high voltages and currents.                                  |
| C306.4 | Analyze overvoltage phenomenon and insulation coordination in electric power systems.           |
| C306.5 | Illustrate non-destructive testing of materials and electric apparatus and high voltage testing |
|        | of electric apparatus.                                                                          |

### Sub: Microcontroller Laboratory

Sub. Code: 18EEL57

After successful completion of the course, the student will be able to:

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C307.1 | Write assembly language programs for data transfer, arithmetic, Boolean and logical       |
|        | instructions.                                                                             |
| C307.2 | Write ALP for code conversions                                                            |
| C307.3 | Write ALP using subroutines for generation of delays, counters, configuration of SFRs for |
|        | serial communication and timers.                                                          |
| C307.4 | Perform interfacing of stepper motor and dc motor for controlling the speed               |
| C307.5 | Generate different waveforms using DAC interface.                                         |
| C307.6 | Perform interfacing of LCD, Elevator, ADC and temperature controller to 8051.             |

## **Sub:** Power Electronics Laboratory

## Sub. Code: 18EEL58

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C308.1 | Analyze the static characteristics of semiconductor devices to discuss their performance. |
| C308.2 | Experiment with different methods of triggering the SCR.                                  |
| C308.3 | Verify the performance of single phase controlled full wave rectifier and AC voltage      |
|        | controller with different types of load conditions.                                       |
| C308.4 | Determine the speed control of a stepper motor, universal motor and DC motors using       |
|        | different types of converter.                                                             |
| C308.5 | Experiment with single phase MOSFET/IGBT based PWM inverter.                              |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Environmental Studies

Sub. Code: 18CIV59

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C309.1 | Understand the principles of ecology and environmental issues that apply to air, land, and |
|        | water issues on a global scale.                                                            |
| C309.2 | Develop critical thinking and/or observation skills, and apply them to the analysis of a   |
|        | problem or question related to the environment.                                            |
| C309.3 | Demonstrate ecology knowledge of a complex relationship between biotic and abiotic         |
|        | components.                                                                                |
| C309.4 | Apply their ecological knowledge to illustrate and graph a problem and describe the        |
|        | realities that managers face when dealing with complex issues.                             |
| C309.5 | Understand the principles of ecology and environmental issues that apply to air, land, and |
|        | water issues on a global scale.                                                            |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC Course Outcome

EEE

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **Course Outcomes for 6<sup>th</sup> Semester**

Sub: Control Systems

Sub. Code: 18EE61

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C310.1 | Demonstrate the mathematical modelling of electrical, mechanical and analogous systems.    |
| C310.2 | Apply block diagram and signal flow graph methods to obtain transfer function of systems.  |
| C310.3 | Determine transient and steady state time response of a simple control system& investigate |
|        | the performance of a given system in time and frequency domains.                           |
| C310.4 | Determine the stability of the system by using Routh criterion, root locus, bode plot and  |
|        | Nyquist plot methods.                                                                      |
| C310.5 | Design control system using different controllers.                                         |

Sub: Power System Analysis-1

## Sub. Code: 18EE62

After successful completion of the course, the student will be able to:

| CO     | Description                                                                             |  |
|--------|-----------------------------------------------------------------------------------------|--|
| C311.1 | Model the power system components & construct per unit impedance diagram of power       |  |
|        | system.                                                                                 |  |
| C311.2 | Analyze three phase symmetrical faults on power system.                                 |  |
| C311.3 | Compute unbalanced phasors in terms of sequence components and vice versa, also develop |  |
|        | sequence networks.                                                                      |  |
| C311.4 | Analyze various unsymmetrical faults on power system.                                   |  |
| C311.5 | Examine dynamics of synchronous machine and determine the power system stability.       |  |

# Sub: Digital Signal Processing

# Sub. Code: 18EE63

After successful completion of the course, the student will be able to:

| CO     | Description                                                                          |
|--------|--------------------------------------------------------------------------------------|
| C312.1 | Evaluate the DFT of various signals using its properties and linear filtering of two |
|        | sequences.                                                                           |
| C312.2 | Apply fast and efficient algorithms for computing DFT and inverse DFT of a given     |
|        | sequence.                                                                            |
| C312.3 | Design digital IIR filters by using different transformation techniques.             |
| C312.4 | Design digital FIR filters using different sampling techniques.                      |
| C312.5 | Model digital filters using different realization methods.                           |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE NAAC

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Sensors and Transducers

Sub. Code: 18EE647

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                  |
|--------|----------------------------------------------------------------------------------------------|
| C319.1 | Use gauges and transducers to measure pressure, direction and distance.                      |
| C319.2 | Discuss the use of light transducers and other devices used for the measurement of           |
|        | electromagnetic radiations.                                                                  |
| C319.3 | Explain the working of different temperature sensing devices.                                |
| C319.4 | Discuss the principles and applications of audio electrical sensors and transducers used for |
|        | the measurement of sound.                                                                    |
| C319.5 | Discuss the use of sensors for the measurement of mass, volume and environmental             |
|        | quantities.                                                                                  |

Sub: Non-Conventional Energy Sources

### Sub. Code: 18ME651

After successful completion of the course, the student will be able to:

| СО     | Description                                                                                 |
|--------|---------------------------------------------------------------------------------------------|
| C317.1 | Describe the environmental aspects of non-conventional energy resources. In Comparison      |
|        | with various conventional energy systems, their prospects and limitations.                  |
| C317.2 | Know the need of renewable energy resources, historical and latest developments.            |
| C317.3 | Describe the use of solar energy and the various components used in the energy production   |
|        | with respect to applications like-heating, cooling, desalination, power generation, drying, |
|        | cooking etc.                                                                                |
| C317.4 | Appreciate the need of Wind Energy and the various components used in energy generation     |
|        | and know the classifications.                                                               |
| C317.5 | Understand the concept of Biomass energy resources and their classification, types of       |
|        | biogas Plants- applications.                                                                |
| C317.6 | Compare Solar, Wind and bio energy systems, their prospects, Advantages and limitations.    |
| C318.6 | Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles      |
|        | and applications.                                                                           |

### Sub: Programming In Java

### **Sub. Code:** 18CS653

| CO     | Description                                                                  |
|--------|------------------------------------------------------------------------------|
| C320.1 | Explain the object-oriented concepts and JAVA.                               |
| C320.2 | Develop computer programs to solve real world problems in Java.              |
| C320.3 | Develop simple GUI interfaces for a computer program to interact with users. |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Control System Lab

Sub. Code: 18EEL66

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                 |
|--------|---------------------------------------------------------------------------------------------|
| C324.1 | Determine the speed – torque characteristics of a D.C. and A.C. servomotor & Synchro pair   |
|        | characteristics.                                                                            |
|        | Determine time response characteristics of a second order system using MATLAB and           |
| C324.2 | frequency response characteristics of a second order system using MATLAB and                |
|        | experimental setup and evaluate time and frequency domain specifications.                   |
|        | Design passive RC lead, lag, lead-lag compensating network for given specifications and     |
| C324.3 | determine the frequency response characteristics of the same using MATLAB and               |
|        | experimental setup.                                                                         |
| C324.4 | Determine the effect of P, PI, PD and PID controller on the step response of a feedback     |
|        | control system using MATLAB and experimental setup.                                         |
| C324.5 | Demonstrate a DC position control system by using MATLAB and determine its step             |
|        | response.                                                                                   |
| C324.6 | Examine the stability of a system by root locus, bode plot and Nyquist plot methods, verify |
|        | and compare the same by using MATLAB.                                                       |

## Sub: Digital Signal Processing Lab

### Sub. Code: 18EEL67

After successful completion of the course, the student will be able to:

| CO     | Description                                                                              |
|--------|------------------------------------------------------------------------------------------|
| C325.1 | Explain physical interpretation of sampling theorem in time and frequency domains.       |
| C325.2 | Evaluate the impulse response of a system.                                               |
| C325.3 | Perform convolution of given sequences to evaluate the response of a system.             |
| C325.4 | Compute DFT and IDFT of a given sequence using the basic definition and/or fast methods. |
| C325.5 | Develop solution for a given difference equation.                                        |
| C325.6 | Design and implement IIR and FIR filters.                                                |

## Sub: Mini-Project

## Sub. Code: 18EEP68

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                 |
|--------|---------------------------------------------------------------------------------------------|
| C326.1 | Demonstrate the knowledge of engineering fundamentals to identify, formulate and solve      |
|        | engineering problems.                                                                       |
| C326.2 | Present the project and be able to defend it.                                               |
| C326.3 | Make links across different areas of knowledge and to generate, develop and evaluate ideas  |
|        | and information so as to apply these skills to the project task.                            |
| C326.4 | habituated to critical thinking and use problem solving skills                              |
| C326.5 | Communicate effectively and to present ideas clearly and coherently in both the written and |
|        | oral forms.                                                                                 |
| C326.6 | Work in a team to achieve common goal.                                                      |
| C326.7 | Learn on my own and take appropriate actions.                                               |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **Course Outcomes for 7<sup>th</sup> Semester**

**Sub:** Power System Analysis – II

Sub. Code: 18EE71

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                     |
|--------|-------------------------------------------------------------------------------------------------|
| C401.1 | Formulate network matrices and models for solving load flow problems.                           |
| C401.2 | Perform steady state power flow analysis of power systems using numerical iterative techniques. |
| C401.3 | Solve issues of economic load dispatch and unit commitment problems.                            |
| C401.4 | Analyze short circuit faults in power system networks using bus impedance matrix.               |
| C401.5 | Discuss optimal scheduling for hydro-thermal system, power system security and reliability.     |
| C401.6 | Apply Point by Point method and Runge Kutta Method to solve Swing Equation.                     |

### Sub: Power System Protection

## Sub. Code: 18EE72

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                  |
|--------|----------------------------------------------------------------------------------------------|
| C402.1 | Discuss performance of protective relays, components of protection scheme.                   |
| C402.2 | Explain the working of distance relays and the effects of arc resistance, power swings, line |
|        | length and source impedance on performance of distance relays.                               |
| C402.3 | Discuss various Pilot protection schemes, protection of generators, motors, Transformers     |
|        | and construction, operating principles, performance of differential relays for differential  |
|        | protection.                                                                                  |
| C402.4 | Explain the principle of circuit interruption in different types of circuit breakers.        |
| C402.5 | Describe the construction and operating principle of different types of fuses and modern     |
|        | trends in power system protection.                                                           |

Sub: Micro- and Nano-Scale Sensors Transducers

**Sub. Code:** 18EE732

| СО     | Description                                                                           |
|--------|---------------------------------------------------------------------------------------|
| C404.1 | Explain the differences between the sensor and transducer technology based on         |
|        | nanotechnology, nanofabrication and the classical sensor technologies.                |
| C404.2 | Develop an informed selection of a sensor or transducer for a particular application. |
| C404.3 | Analyze the technologies that are available commercially at the present time.         |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE NAAC

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Utilization of Electrical Power

**Sub. Code:** 18EE742

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                |
|--------|--------------------------------------------------------------------------------------------|
| C409.1 | Discuss different methods of electric heating & welding, laws of electrolysis, extraction, |
|        | refining of metals and electro deposition process.                                         |
| C409.2 | Discuss the laws of illumination, different types of lamps, lighting schemes and design of |
|        | lighting systems.                                                                          |
| C409.3 | Analyze systems of electric traction, speed time curves and mechanics of train movement.   |
| C409.4 | Explain the motors used for electric traction, their control & braking and power supply    |
|        | system used for electric traction.                                                         |
| C409.5 | Explain the working of electric and hybrid electric vehicles.                              |

Sub: Power system Simulation Laboratory

### Sub. Code: 18EEL76

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C417.1 | Develop a program in MATLAB to assess the performance of medium and long                  |
|        | transmission lines.                                                                       |
| C417.2 | Develop a program in MATLAB to obtain the power angle characteristics of salient and      |
|        | non-salient pole alternator.                                                              |
| C417.3 | Develop a program in MATLAB to assess the transient stability under three phase fault at  |
|        | different locations in a of radial power systems.                                         |
| C417.4 | Develop programs in MATLAB to formulate bus admittance and bus impedance matrices         |
| C417.4 | of interconnected power systems.                                                          |
| C417.5 | Use Mi-Power package to solve power flow problem for simple power systems.                |
| C417.6 | Use Mi-Power package to study unsymmetrical faults at different locations in radial power |
| C417.0 | systems.                                                                                  |
| C417.7 | Use of Mi-Power package to study optimal generation scheduling problems for thermal       |
|        | power plants.                                                                             |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Rely and High Voltage Laboratory

Sub. Code: 18EEL77

After successful completion of the course, the student will be able to:

| СО     | Description                                                                                 |
|--------|---------------------------------------------------------------------------------------------|
| C418.1 | Experimentally verify the characteristics of over current, over voltage, under voltage and  |
|        | negative sequence relays of both electromagnetic and static type.                           |
| C418.2 | Experimentally verify the characteristics of microprocessor based over current, over        |
|        | voltage, under voltage relays and distance relay.                                           |
| C418.3 | Justify knowledge of protection schemes of generator, motor and feeders.                    |
| C419.4 | Analyze the spark over characteristics for both uniform and non-uniform field               |
| C418.4 | configurations using High voltage AC and DC.                                                |
| C418.5 | Measure high AC and DC voltages and breakdown strength of transformer oil.                  |
| C419 6 | Draw electric field lines and measure the capacitance of different electrode configuration  |
| C418.6 | models.                                                                                     |
| C418.6 | Justify knowledge of generating standard lightning impulse voltage to determine efficiency, |
|        | energy of impulse generator and 50% probability flashover voltage for air insulation.       |

### **Sub:** Project Phase – I

### Sub. Code: 18EEP78

| CO     | Description                                                                     |
|--------|---------------------------------------------------------------------------------|
| C419.1 | Demonstrate a sound technical knowledge of their selected project topic.        |
| C419.2 | Undertake problem identification, formulation and solution.                     |
| C419.3 | Design engineering solutions to complex problems utilizing a systems approach.  |
| C419.4 | Communicate with engineers and the community at large in written an oral forms. |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME NAAC

EEE

**Course Outcome** 

2021-22

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# **Course Outcomes for 8<sup>th</sup> Semester**

Sub: Power System Operation & Control

Sub. Code: 18EE81

After successful completion of the course, the student will be able to:

| СО     | Description                                                                             |
|--------|-----------------------------------------------------------------------------------------|
| C420.1 | Describe various levels of controls in power systems, architecture and configuration of |
|        | SCADA.                                                                                  |
| C420.2 | Develop and analyze mathematical models of Automatic Load Frequency Control.            |
| C420.3 | Develop mathematical model of Automatic Generation Control in Interconnected Power      |
|        | system.                                                                                 |
| C420.4 | Discuss the Control of Voltage, Reactive Power and Voltage collapse.                    |
| C420.5 | Explain security, contingency analysis, state estimation of power systems.              |

Sub: Electrical Estimation and Costing

### **Sub. Code:** 18EE822

After successful completion of the course, the student will be able to:

| CO     | Description                                                                             |
|--------|-----------------------------------------------------------------------------------------|
| C422.1 | Explain the architectural design, Communication and measurement technology and          |
|        | performance analysis tools for smart grid.                                              |
| C422.2 | Discuss various stability analysis tools for smart grid                                 |
| C422.3 | Explain computational tools and pathway/barrier for smart grid design.                  |
| C422.4 | Develop cleaner, more environmentally responsible technologies for the electric system. |
| C422.5 | Explain methods to promote smart grid awareness and making the existing transmission    |
|        | system smarter by investing in new technology.                                          |

**Sub:** Big Data Analytics in Power Systems

## **Sub. Code:** 18EE823

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                     |
|--------|-------------------------------------------------------------------------------------------------|
| C423.1 | Discuss role of big data and machine-learning methods applicable to power systems and in        |
|        | particular to Smart Grid communications.                                                        |
| C423.2 | Discuss optimization methods which are suitable for big data models in power systems.           |
| C423.3 | Discuss various cyber security issues, electricity theft detection and mitigation that exist in |
|        | IoT-enabled future power systems.                                                               |
| C423.4 | Discuss renewable energy planning concerns associated with planned future power systems         |
|        | that have high renewable penetration.                                                           |
| C423.5 | Discuss various methods for transformer differential Protection.                                |



Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt.of Karnataka and Affiliated to VTU Belagavi. Accredited at 'A' Grade by NAAC Programmes Accredited by NBA: CSE, ECE, EEE & ME EEE NAAC

**Course Outcome** 

2021-22

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Sub: Project Work Phase – II

Sub. Code: 18EEP83

After successful completion of the course, the student will be able to:

| CO     | Description                                                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C426.1 | Demonstrate the knowledge of engineering fundamentals to identify, formulate and solve engineering problems.                                                |
| C426.2 | Present the project and be able to defend it.                                                                                                               |
| C426.3 | Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task. |
| C426.4 | habituated to critical thinking and use problem solving skills                                                                                              |
| C426.5 | Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.                                                     |
| C426.6 | Work in a team to achieve common goal.                                                                                                                      |
| C426.7 | Learn on my own and take appropriate actions.                                                                                                               |

## Sub: Technical Seminar

### Sub. Code: 18EES84

After successful completion of the course, the student will be able to:

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C427.1 | Use and develop knowledge in the field of engineering and other disciplines through       |
|        | independent learning and collaborative study.                                             |
| C427.2 | Identify, understand and discuss current, real-time issues.                               |
| C427.3 | Improve oral and written communication skills.                                            |
| C427.4 | Explore an appreciation of the self in relation to its larger diverse social and academic |
|        | contexts.                                                                                 |
| C427.5 | Apply principles of ethics and respect in interaction with others.                        |

## Sub: Internship

### Sub. Code: 18EEI85

After successful completion of the course, the student will be able to:

| CO     | Description                                                                               |
|--------|-------------------------------------------------------------------------------------------|
| C428.1 | Gain practical experience within industry in which the internship is done.                |
| C428.2 | Acquire knowledge of the industry in which the internship is done.                        |
| C428.3 | Apply knowledge and skills learned to classroom work.                                     |
| C428.4 | Develop a greater understanding about career options while more clearly defining personal |
|        | career goals.                                                                             |
| C428.5 | Experience the activities and functions of professionals.                                 |
| C428.6 | Develop and refine oral and written communication skills.                                 |