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VISION 

“To be the centre of excellence in teaching and learning to produce the competent & 

socially responsible professionals in the domain of Electrical & Electronics Engineering.” 

 

 
MISSION 

I. To educate students with core knowledge of Electrical and Electronics 

Engineering to excel in their professional career. 

II. To develop problem solving skills, professional skills and ethical values among 

the students for the betterment of mankind.  

III. To prepare technically competent and socially responsible Electrical Engineer to 

serve the future needs of the society. 

 
Program Educational Objectives (PEOs): 

Engineering Graduates will be able to: 

PEO1: Achieve successful professional career in Electrical Engineering and allied 

disciplines. 

PEO2: Pursue higher studies and continuously engage in upgrading the professional 

skills. 

PEO3: Demonstrate professional & ethical values, effective communication skills and 

teamwork to solve issues related to profession, society and environment. 
  

 
Program Specific Outcomes (PSOs): 

Engineering Graduates will be able to: 

PSO1: Apply knowledge & competencies to analyze & design Electrical & 

Electronics circuits, control and power systems, machines & industrial drives. 
 

PSO2: Use software/hardware tools for the design, simulation and analysis of 

Electrical and Electronics Systems. 
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Overview 

 

Year / Semester 3
rd

 Year /6
th
 Semester Academic Year 2021 - 2022 

Laboratory Title Digital Signal Processing Laboratory Laboratory Code 18EEL67 

Total Contact  Hours 42 Exam Hours 3 Hours 

CIE Marks 40 SEE Marks 60 

 

Objectives 

 

 To explain the use of MATLAB software in evaluating the DFT and IDFT of given sequence  

 To verify the convolution property of the DFT  

 To design and implementation of IIR and FIR filters for given frequency specifications.  

 To realize IIR and FIR filters.  

 To help the students in developing software skills  

 

Course Outcomes 

 

      The student, after successful completion of the course, will be able to  

1. Show the physical interpretation of sampling theorem in time and frequency domains. 

2. Evaluate the impulse response of a system. 

3. Perform convolution of given sequences to evaluate the response of a system 

4. Compute DFT and IDFT of a given sequence using the basic definition and/or fast methods. 

5. Provide a solution for a given difference equation. 

6. Design and implement IIR and FIR filters. 

 

 

 

 

 

 

 

Prerequisites 
 

• MATLAB programming language. 

• Basic operation such as creating file, delete, copy, rename etc should be known. 

• DSP algorithm operation should be understood. 

 

Base Course 
 

• Signals and Systems 

• Digital Signal Processing 

 

 

Resource Required 
 

• MATLAB software. 
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Introduction 

 

MATLAB, which stands for Matrix Laboratory, is a state-of-the-art mathematical software 

package for high performance numerical computation and visualization provides an interactive 

environment with hundreds of built in functions for technical computation, graphics and animation 

and is used extensively in both academia and industry. It is an interactive program for numerical 

computation and data visualization, which along with its programming capabilities provides a very 

useful tool for almost all areas of science and engineering. At its core ,MATLAB is essentially a 

set (a “toolbox”) of routines (called “m files” or “mex files”) that sit on your computer and a 

window that allows you to create new variables with names (e.g. voltage and time) and process 

those variables with any of those routines (e.g. plot voltage against time, find the largest voltage, 

etc). It also allows you to put a list of your processing requests together in a file and save that 

combined list with a name so that you can run all of those commands in the same order at some 

later time. Furthermore, it allows you to run such lists of commands such that you pass in data. 

 

MATLAB Windows: 

MATLAB works with through these basic windows 

 

Command Window 

This is the main window .it is characterized by MATLAB command prompt >> when you launch 

the application program MATLAB puts you in this window all commands including those for 

user-written programs ,are typed in this window at the MATLAB prompt  

 

The Current Directory Window 

The Current Directory window displays a current directory with a listing of its contents. There is 

navigation capability for resetting the current directory to any directory among those set in the 

path. This window is useful for finding the location of particular files and scripts so that they can 

be edited, moved, renamed, deleted, etc. The default current directory is the Work subdirectory of 

the original MATLAB installation directory 

 

The Command History Window 

The Command History window, at the lower left in the default desktop, contains a log of 

commands that have been executed within the Command window. This is a convenient feature for 

tracking when developing or debugging programs or to confirm that commands were executed in a 

particular sequence during a multistep calculation from the command line. 
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Graphics Window 

The output of all graphics commands typed in the command window are flushed to the graphics or 

figure window, a separate gray window with white background color the user can create as many 

windows as the system memory will allow. 

 

Edit Window 

This is where you write edit, create and save your own programs in files called M files. 

 
 

Input-output 

MATLAB supports interactive computation taking the input from the screen and flushing, the 

output to the screen. In addition it can read input files and write output files. 

 

Data Type 

The fundamental data distinct data objects- integers, real numbers, matrices, character strings, 

structures and cells. There is no need to declare variables as real or complex, MATLAB 

automatically sets the variable to be real. 

 

Dimensioning 

Dimensioning is automatic in MAT required for vectors or arrays .we can find the dimensions of 

an existing matrix or a vector with the size and length commands. 
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Where to work in MATLAB? 

All programs and commands can be entered either in the 

a) Command window 

b) As an M file using MATLAB editor 

Note: Save all M files in the folder 'work' in the current directory. Otherwise you have to locate the 

file during compiling. Typing quit in the command prompt>> quit, will close MATLAB 

Development Environment. For any clarification regarding plot etc, which are built in functions 

type help topic i.e. help plot. 
 

 Operations on vector and matrices in MATLAB 

 MATLAB utilizes the following arithmetic operators; 

 + Addition 

 - Subtraction 

 * Multiplication 

 / Division 

 ^ Power Operator 

 „transpose 

 

Relational operators in MATLAB 

 
 

 

Basic Functions in MATLAB 

1) Plot Syntax: plot (x, y) 

Plots vector y versus vector x. If x or y is a matrix, then the vector is plotted versus the rows or 

columns of the matrix. 

2) Stem Syntax: stem(Y) 

Discrete sequence or "stem" plot. 

Stem (Y) plots the data sequence Y as stems from the x axis terminated with circles for the data 

value. If Y is a matrix then each column is plotted as a separate series. 
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3) Subplot Syntax: Subplot (2 2 1) 

This function divides the figure window into rows and columns. 

Subplot (2 2 1) divides the figure window into 2 rows and 2 columns 1represent number of the 

figure. 

1 

(2 2 1) 

2 

(2 2 2) 

3 

(2 2 3) 

4 

(2 2 4) 
 

Subplot (3 1 2) divides the figure window into 3 rows and 1 column 2 represent number of the 

figure 

1  (3 1 1 ) 

2  (3 1 2 ) 

3  (3 1 3 ) 

4) Disp Syntax: disp(X) 

Description: disp(X) displays an array, without printing the array name. If X contains a text string, 

the string is displayed.Another way to display an array on the screen is to type its name, but this 

prints a leading "X=," which is not always desirable.Note that disp does not display empty arrays. 

5) xlabel Syntax: xlabel('string') Description: xlabel('string') labels the x-axis of the current axes. 

6) ylabel Syntax : ylabel('string') 

Description: ylabel('string') labels the y-axis of the current axes. 

7) Title Syntax : title('string') 

Description: title('string') outputs the string at the top and in the center of the current axes. 

8) grid on Syntax : grid on 

Description: grid on adds major grid lines to the current axes. 
 

General Instructions 
 

 Go through the Instruction manual before start of the experiment.  

 Strictly follow the instructions given by the Teacher/ Lab Instructor. 

 It is mandatory to come to lab in a formal dress (Shirts, Trousers, ID card, and Shoes for boys). 

Strictly no Jeans for both Girls and Boys. 

 It is mandatory to come with work book and lab record in which previous experiment should 

be written. 

 Lab record of the present lab experiment should be corrected on the same day. 

 Mobile Phones should be Switched OFF in the lab session. 

 Students have to come to lab in-time. Late comers are not allowed to enter the lab. 

 Prepare for the viva questions. At the end of the experiment, the lab faculty will ask the viva 

questions and marks are allotted accordingly. 
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Contents 
 

Expt. 

No. 
Experiment 

1 Verification of Sampling Theorem both in time and frequency domains. 

2 Evaluation of impulse response of a system. 

3 To perform linear convolution of given sequences. 

4 
To perform circular convolution of given sequences using (a) the convolution summation 

formula (b) the matrix method and (c) Linear convolution from circular convolution with 

zero padding. 

5 Computation of N – point DFT and to plot the magnitude and phase spectrum. 

6 Linear and circular convolution by DFT and IDFT method. 

7 Solution of a given difference equation. 

8 Calculation of DFT and IDFT by FFT 

9 
Design and implementation of IIR filters to meet given specification (Low pass, high pass, 

band pass and band reject  Filters) 

10 
Design and implementation of FIR filters to meet given specification (Low pass, high pass, 

band  pass and band reject filters) using different window functions 

11 
Design and implementation of FIR filters to meet given specification (Low pass, high pass, 

band pass and band reject filters) using frequency sampling technique. 

12 Realization of IIR and FIR filters. 

 

Reference 
 

• Proakis & Monalakis, Digital Signal processing Principles Algorithms & Applications, 

Pearson   Education, Edition, New Delhi, 2007. 

• Oppenheim & Schaffer, Discrete Time signal Processing, PHI. 2003.  

• S. K. Mitra, Digital Signal processing, Tata Mc-Graw Hill, 2
nd

 Edition, 2004.  

• Lee Tan: Digital signal processing, Elsevier publications, 2007. 

• Practical C++ programming by Oreilly. 

• Introduction to programming with MATLAB for scientists and Engineers, 2e Broenkow,ML 

2007. 

• MATLAB and introduction with applications 2
nd

 edition- Amos Gillat. 

 

Evaluation Scheme 
 

CIE Marks: 40 

Internal Assessment: 16 Marks 

Write-up: 03 Marks 

Conduction & result: 10 Marks 

Viva-voce: 03 Marks 

Continues Assessment: 24 

Scheme of External Examination 

External Exam will be conducted for 100 Marks and obtained marks will be scaled down for 

60 Marks by university 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 7 

 
  

Experiment 1 
 

1.0  Verification of Sampling Theorem both in time and frequency domains. 
 

 

1.1 Aim 
 

To verify Sampling theorem for a signal of given frequency. 
 

1.2 Theory  
 

Sampling is a process of converting a continuous time signal (analog signal) x (t) into a discrete time 

signal x[n], which is represented as a sequence of numbers. (A/D converter). Converting back x[n] 

into analog (resulting in )(tx


) is the process of reconstruction. (D/A converter). For )(tx


 to be exactly 

the same as x (t), sampling theorem in the generation of x(n) from x(t) is used. The sampling 

frequency fs determine the spacing between samples.  Aliasing-A high frequency signal is converted 

to a lower frequency, results due to under sampling. Though it is undesirable in ADCs, it finds 

practical applications in stroboscope and sampling oscilloscopes. 

Sampling theorem: Sampling theorem includes two definitions. 

i. A band limit of the signal which is having finite energy, whose maximum frequency component 

is W Hz can be completely representing into its samples at the rate of 2W samples/sec. 

ii. A band limit of the signal which is having finite energy, whose maximum frequency component 

is W Hz, can be completely recovered from its samples at the rate of 2W samples/sec. 

Nyquist Rate Sampling: The Nyquist rate is the minimum sampling rate required to avoid aliasing, 

equal to the highest modulating frequency contained within the signal. In other words, Nyquist rate is 

equal to two sided bandwidth of the signal (Upper and lower sidebands) i.e. fs = 2W.To avoid 

aliasing, the sampling rate must exceed the Nyquist rate. i. e. fs>fN, where fN =2W. 

 

1.2 Algorithm 
 

1. Select the frequency of analog signal f Hz. 

2. To generate sine wave of f Hz defines a closely spaced time vector. 

3. Generate the sinusoid and plot the signal. 

4. Select the sampling frequency. Generate a suitable time scale for this sampling signal. 

5. Sample the analog signal at the instant specified by n. 

6. Modify the time vector n used for discrete simulation. 

7. Reconstruct the analog signal from its discrete samples. 

8. Compare the analog and reconstructed signal. 

9. Repeat the values experiment for different values of f and verify reconstructed and analog signal. 
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1.4 MATLAB Implementation 

 

Step 1: MATLAB can generate only discrete time signals. For an approximate analog signal xt, 

choose the spacing between the samples to be very small (≈0), say 50µs = 0.00005. Next choose the 

time duration, say xt exists for 0.05seconds. (tfinal in program) (For low frequency say <1000 Hz 

choose 0.05 secs, for higher choose 0.01 secs or lesser as appropriate). Now begin with the vector that 

represents the time base- 

t = 0:0.00005:0.05; 

The colon (:) operator in MATLAB creates a vector, in the above case a time vector running from 0 to 

0.05 in steps of 0.00005. The semicolon (;) tells MATLAB not to display the result. Given t, the 

analog signal xt of frequency f is generated as (cos (ωt) =cos (2πft)):- 

xt=cos(2*pi*f*t); 

Where pi is recognized as 3.14 by MATLAB. 

Step 2: To illustrate oversampling condition, choose sampling frequency fs0=2.2*f. For this sampling 

rate T0=1/fs0, generate the time vector as n1 = 0:T0:0.05; & over sampled discrete time signal x1=cos 

(2*pi*f*n1); 

Step 3: Repeat step 2 for different sampling frequencies, i.e., fs=1.3*f & fs=2*f for under sampling 

and Nyquist sampling conditions. 

 

1.5  MATLAB Program: Sampling Theorem in Time Domain 
 

clc; 

clear all; 

close all; 

tfinal=0.05; 

t=0:0.00005:tfinal; 

f=input('enter the analogy frequency f='); 

xt=cos(2*pi*f*t); 

 

%under sampling plot 

fs1=1.3*f; 

n1=0:1/fs1:tfinal; 

xn=cos(2*pi*f*n1); 

subplot(3,1,1); 

plot(t,xt,'b',n1,xn,'r*-'); 

title('under sampling'); 

xlabel('time'); 

ylabel('amplitude'); 

 

%nyquist plot 

fs2=2*f; 

n2=0:1/fs2:tfinal; 

xn=cos(2*pi*f*n2); 

subplot(3,1,2); 

plot(t,xt,'b',n2,xn,'r*-'); 

title('nyquist sampling'); 

xlabel('time'); 

ylabel('amplitude'); 

 

%over sampling plot 

fs3=5*f; 

n3=0:1/fs3:tfinal; 

xn=cos(2*pi*f*n3); 

subplot(3,1,3); 

plot(t,xt,'b',n3,xn,'r*-'); 

title('over sampling'); 

xlabel('time'); 

ylabel('amplitude'); 
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1.6  MATLAB Program: Sampling Theorem in Frequency Domain 
 
 

clc;  

close all;  

clear all;  

f1 = input('Enter the first sine wave frequency = ');  

f2= input('Enter the second sine wave frequency = ');  

fn = 2*max(f1,f2);  

fs = fn/2;  

t = [0:1/fs:0.1];  

x = cos(2*pi*f1*t)+cos(2*pi*f2*t);  

xk = fft(x);  

f = [0:length(xk)-1]*fs/length(xk);   

figure(1);  

plot(f,abs(xk));  

xlabel('frequency');   

ylabel('amplitude');  

title('Under Sampling');  

grid; 

fs = fn;  

t = [0:1/fs:0.1];  

x = cos(2*pi*f1*t)+cos(2*pi*f2*t);  

xk = fft(x);  

f = [0:length(xk)-1]*fs/length(xk);  

figure(2);  

plot(f,abs(xk));  

xlabel('frequency');   

ylabel('amplitude');  

title('Nyquist Rate Sampling'); 

grid; 

fs = 2*fn;  

t = [0:1/fs:0.1]; 

x = cos(2*pi*f1*t)+cos(2*pi*f2*t); 

xk = fft(x);  

f = [0:length(xk)-1]*fs/length(xk); 

 

figure(3);  

plot(f,abs(xk));  

xlabel('freq');   

ylabel('amplitude');  

title('Over Sampling');  

grid; 

 

 
 
1.6 Inference 

 

1. From the under sampling plot observe the aliasing effect. The analog signal is of 200Hz 

(T=0.005s). The reconstructed (from under sampled plot) is of a lower frequency. The alias 

frequency is computed as fd-fs1 = 200-1.3*200 = 200-260= -60Hz. This is verified from the plot. 

The minus sign results in an 180˚ phase shift. 

2. Sampling at the Nyquist rate results in samples sin(πn) which are identically zero, i.e., we are 

sampling at the zero crossing points and hence the signal component is completely missed. This 

can be avoided by adding a small phase shift to the sinusoid. The above problem is not seen in 

cosine waveforms (except cos (90n)). A simple remedy is to sample the analog signal at a rate 

higher than the Nyquist rate. The Fig1.2 shows the result due to a cosine signal 

(x1=cos(2*pi*fd*n1); 

3. The over sampled plot shows a reconstructed signal almost similar to that of the analog signal. 

Using low pass filtering the wave form can be further smoothened. 
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1.7 Output Waveforms 
 

Time Domain 

 
Plots of a sampled cosine wave of 200Hz 

 

Frequency Domain 
 

  

 
1.8 Results  

 

1.9 Conclusion 
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Experiment 2 
 

2.0   Evaluation of impulse response of a system 

 
 

2.1 Aim 
 

To write a MATLAB program to evaluate the impulse response of the system. 
 

2.2 Theory 
 

LTI Discrete time system is completely specified by its impulse response i.e. knowing the impulse 

response we can compute the output of the system to any arbitrary input. Let h[n] denotes the impulse 

response of the LTI discrete time systems. Since discrete time system is time invariant, its response to 

[n-1] will be h[n-1] .Likewise the response to [n+2] ,  [n-4]  and [n-6]  will be h[n+2], h[n-4] and h[n-

6] .   
 

From the above result arbitrary input sequence x[n] can be expressed as a weighted linear combination 

of delayed and advanced unit sample in the form   k=+ and k=-  

x[n] = x[k] h[n-k]  

where weight x[k] on the right hand side denotes specifically the k 
th

 sample value of the sequence. 

The response of the LTI discrete time system to the sequence   

 x[k] [n-k] will be x[k] h [n-k].   

As a result, the response y[n] of the discrete time system to x[n] will be given by   

y[n] = x[k] h [n-k] …………..(1)  

This can be alternately written as   

 y[n] = x[n-k] h [k]…………(2)  
 

The above equation (1) and (2) is called the convolution sum of the sequences x[n] and h[n] and 

represented compactly as y[n] =x[n] * h[n] Where the notation * denotes the convolution sum.   
 

Structure for Realization of Linear Time Invariant systems:  Let us consider the first order system 

Y(n)=-a 1y(n-1)+b0 x(n) +b1 x(n-1).This realization uses separate delays(memory) for both the input 

and output samples and it is called as Direct form one structure.  A close approximation reveals that 

the two delay elements contain the same input w (n) and hence the same output w(n-1).consequently 

these two elements  can be  merged into one delay. In contrast to the direct form I structure, this new 

realization requires only one delay for auxiliary quantity w (n), and it is more efficient in terms of 

memory requirements. It is called the direct form II structure and it is used extensively. 

 
 

2.3 Algorithm 

 

1. Create symbolic variables n and x, assume that they are integers. 

2. Compute inverse z-transform of y 

3. Get the impulse response of the system using command “impz(b,a,N)” where ‘b‟ is numerator     

    Coefficients, ‘a‟ is denominator coefficients and number of samples is N. 

4. Plot discrete sequence data. 
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2.4 MATLAB Implementation 
 

MATLAB has an inbuilt function „impz‟ to solve difference equations numerically, given the input 

and difference equation coefficients (b, a).  

y=impz(b,a,N) 

Where x is the input sequence, y is the output sequence which is of same length as x. 
 

2.5 Calculation 
 

Let the Difference equation is given as   y(n) = x(n)+0.5x(n-1)+0.85x(n-2)+y(n-1)+y(n-2)    
 

y(n) = x(n)+0.5x(n-1)+0.85x(n-2)+y(n-1)+y(n-2)   

y(n) - y(n-1) - y(n-2) = x(n) + 0.5x(n-1) + 0.85x(n-2) Taking Z transform on both sides,   

y(z) - z
-1

 y(z)- z
-2

 y(z) = x(z) + 0.5 z
-1

 x(z) + 0.85 z
-2

 x(z)  

y(z)[1 - z
-1

 - z
-2

] = x(z)[1 + 0.5 z
-1

 + 0.85 z
-2

 ]   

But, h(z) = y(z)/x(z)   

  = [1 + 0.5 z
-1

 + 0.85 z
-2

 ]/ [1 - z
-1

 - z
-2

] By dividing we get   

H(z) =  1 + 1.5 z
-1

 + 3.35 z
-2

 + 4.85 z
-3

   

h(n) = [1 1.5 3.35 4.85] 
 

 
 

2.6  MATLAB Program:  
 
 

clc; 

close all; 

clear all; 

%difference equation of second order system 

%y(n)=x(n)+.5x(n-1)+.85x(n-2)+y(n-1)+y(n-2) 

b=input('enter the coefficient of x(n),x(n-1)..= '); 

a=input('enter the coefficient of y(n),y(n-1)..= '); 

N=input('enter the no of samples of imp response='); 

[h,t]=impz(b,a,N); 

subplot(2,1,1); 

%figure(1) 

plot(t,h); 

title('plot of impulse response'); 

ylabel('amplitude'); 

xlabel('time index---->N'); 

subplot(2,1,2); 

%figure(2) 

stem(t,h); 

title('plot of impulse response'); 

ylabel('amplitude'); 

xlabel('time index---->N'); 

disp(h); 

grid on; 
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2.7 Output Waveforms 
 

Input: 

enter the coefficient of x(n),x(n-1)..= [1 0.5 0.85] 

enter the coefficient of y(n),y(n-1)..= [1 -1 -1] 

enter the no of samples of imp response=4 

Output 

1.0000 

1.5000 

3.3500 

4.8500 

 

 

 

 

2.8 Results  

 

 

 

 

2.9 Conclusion 

 

 

 

 

 

 

 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 14 

 
  

Experiment 3 
 

3.0  Linear Convolution of two given sequences. 

 
 

3.1 Aim 
 

To obtain Linear convolution of two finite duration sequences. 
 

3.2 Theory 

Convolution is an integral concatenation of two signals. It has many applications in numerous areas of 

signal processing. The most popular application is the determination of the output signal of a linear 

time-invariant system by convolving the input signal with the impulse response of the system. Note 

that convolving two signals is equivalent to multiplying the Fourier transform of the two signals. In 

linear systems, convolution is used to describe the relationship between three signals of interest: the 

input signal, the impulse response, and the output signal. In linear convolution length of output 

sequence is, length(y (n)) = length(x (n)) + length (h (n)) – 1. 

 
Mathematical Formula: 
 
The linear convolution of two continuous time signals x(t) and h(t) is defined by  
 
 
 
 

 

For discrete time signals x(n) and h(n), is defined by  
 
 
 
 
 
Where x (n) is the input signal and h (n) is the impulse response of the system. 
 

3.3 Algorithm 

 

1. Read the input sequence, x[n] and plot. 
 

2. Read the impulse response of the system, h[n] and plot 
 

3. Convolve the two sequences using conv command and plot the results. 

 

3.4 MATLAB Implementation 

 

The timing information for a sequence is provided by another vector, say n=-3:5; creates a vector with 

values from -3 to 5 with an increment of 1. During plotting, the time vector size and the sequence size 

should be the same, i.e., the number of elements in the sequence x1 and in its time vector n1 should be 

the same. Similarly for x2 and y. 
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3.5 Calculation 

 

Example for finding Linear Convolution of Right sided Sequences. 

 

 

 

 

   

 

 

 

 

 

On simplification we get, 

 

 

 

Example for finding Linear Convolution of both sided sequences. 

X1 = [1, 2, 3, 2, 1, 3, 4] 
 

X2 = [2, -3, 4, -1, 0, 1] 

 

 

      
 

Z= X1 * X2 

On Simplification, we get 

 

 

 

Z= {2, 1, 4, 2, 6, 9, 3, 2, 15, -3, 3, 4} 
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3.6  MATLAB Program: Linear  

Convolution of Right Sided  

Sequences 

 

clc; 

clear all; 

close all; 

x1=input('enter the first sequence x1(n)='); 

x2=input('enter the second sequence x2(n)='); 

y=conv(x1,x2); 

disp('linear convolution of x1&x2 is='); 

disp(y); 

%graphical display 

subplot(2,2,1); 

stem(x1); 

xlabel('n'); 

ylabel('x1(n)'); 

title('plot of x1(n)'); 

subplot(2,2,2); 

stem(x2); 

xlabel('n'); 

ylabel('x2(n)'); 

title('plot of x2(n)'); 

subplot(2,1,2); 

stem(y); 

xlabel('n'); 

ylabel('y(n)'); 

title('convolution output'); 

 

 

 

 

3.7 MATLAB Program: Linear 

Convolution of Both Sided Sequences 

 

clc; 

close all; 

clear all; 

x1=input('enter the first sequence x1(n)='); 

x2=input('enter the second sequence x2(n)='); 

n1=-3:3; 

n2=-1:4; 

ybegin=n1(1)+n2(1); 

yend=n1(length(x1))+n2(length(x2)); 

ny=[ybegin:yend]; 

y=conv(x1,x2); 

disp('linear convolution of x1&x2 is ='); 

disp(y); 

subplot(2,2,1); 

stem(n1,x1); 

xlabel('n'); 

ylabel('x1(n)'); 

title('plot of x1(n)'); 

subplot(2,2,2); 

stem(n2,x2); 

xlabel('n'); 

ylabel('x2(n)'); 

title('plot of x2(n)'); 

subplot(2,1,2); 

stem(ny,y); 

xlabel('n'); 

ylabel('y(n)'); 

title('convolution output'); 
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3.8 Output Waveforms 
 

1. Linear Convolution of Right Sided 

Sequences 

Input: 

enter the first sequence x1(n)=[1 5 10 20] 

enter the second sequence x2(n)=[5 10] 
 

Output: 

linear convolution of x1&x2 is= 

     5    35   100   200   200 

 

 

 

2.  Linear convolution of both sided sequence 
 

Input: 

enter the first sequence x1(n)=[1 2 3 2 1 3 4] 

enter the second sequence x2(n)=[2 -3 4 -1 0 1] 
 

Output: 

linear convolution of x1&x2 is = 

  2     1     4     2     6     9     3     2    15    -3     3     4 

 
 

 

 
 

 

 3.9 Results  
 

 

 

 

 

 

 

 

3.10 Conclusion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 18 

 
  

Experiment 4 

 

4.0  (a) Circular Convolution of two given sequences using summation formula. 
 

(b) Circular Convolution of two given sequences using matrix method. 
 

 (c) Linear convolution from circular convolution with zero padding. 
 
 

4.1 (a) Aim 
 

To obtain circular convolution of two finite duration sequences. 
 
      (b) Aim 

To write MATLAB program to find circular convolution by matrix method. 
 

      (c) Aim 
 

To find linear convolution from circular convolution using MATLAB program with zero padding. 

 
 

4.2 Theory 
 

a) Circular Convolution of two given sequences using summation formula. 

 

 As seen in the last experiment, the output y[n] of a LTI (linear time invariant) system can be 

obtained by convolving the input x[n] with the system‟s impulse response h[n]. The above linear 

convolution is generally applied to aperiodic sequences. Whereas the Circular Convolution is used 

to study the interaction of two signals that are periodic. 

 The linear convolution sum is 









kk

khknxknhkxnhnxny ][][][][][][][  . To compute 

this equation, the linear convolution involves the following operations: 

 

 Folding- fold h[k] to get h[-k] ( for y[0])  

 Multiplication – vk[n] = x[k] × h[n-k] (both sequences are multiplied sample by sample) 

 Addition- Sum all the samples of the sequence vk[n] to obtain y[n] 

 Shifting – the sequence h[-k] to get h[n-k] for the next n. 

 The circular convolution sum is   





k

N
knhkxnhNnxny ][][][][][  where the index 

N
kn  implies circular shifting operation and 

N
k  implies folding the sequence circularly. 

 Steps for circular convolution are the same as the usual convolution, except all index calculations 

are done "mod N" = "on the wheel".  

 Plot f [m] and h [−m] as shown in Fig. 4.1. (use f(m) instead of x(k)) 

 Multiply the two sequences 

 Add to get y[m]  

 "Spin" h [−m] n times Anti Clock Wise (counter-clockwise) to get h[n-m]. 

 Where x[n] and h[n] can be both finite and infinite duration sequences.  If infinite sequences, they 

should be periodic, and the N is chosen to be at least equal to the period. If they are finite 
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sequences N is chosen as >= to max (xlength, hlength). Whereas in linear convolution N>= 

xlength+hlength-1. 

 

Plotting of f(m) and h(-m) for circular convolution 

 

Let x1(n) and x2(n) are finite duration sequences both of length N with DFT‟s X1(k) and X2(k). 

Convolution of two given sequences x1(n) and x2(n) is given by the equation, 

x3(n) = IDFT[X3(k)]where X3(k) = X1(k) X2(k) 

 

b) Circular Convolution of two given sequences using matrix method. 

 
Matrix Method for Convolution: Due to the importance of Discrete Fourier Transform (DFT) in signal 

processing application, it is critical to have an efficient method to compute this algorithm. DFT operates on a N 

-point sequence of numbers, referred to as x(n) . The value x(n) is presented in time domain data and usually 

can be taught as a uniformly sampled version of a finite period of a continuous function f (x) . The DFT of x(n) 

sequence is transformed to X(k) in frequency domain representation employing by using Discrete Fourier 

Transform. The functions x(n) and X(k) is generally represented in complex signal form, given by  

  

Where x(n) is the input time domain representation and N is the number of input to the DFT. The value 

n represents the discrete time-domain index and k is the normalized frequency domain index. The description of 

efficient computation is discussed on DFT methods since the IDFT and DFT consumes the same type of 

computational algorithm. From the computation of each value of k , it is observed that direct computation of 

X(k) involves N complex multiplications ( 4N real multiplications) and N −1 complex additions ( 4N − 2 real 

additions). Eventually, to compute all N values of the DFT requires N2 complex multiplications and N2 − N 

complex additions. The multiplication of two discrete time signals in discrete Fourier transform is equivalent to 

the circular convolution of their sequences in time domain. For x(n) and h(n) signal convolution is express as:  

 

 Here the term h(m-n)N indicates the circular convolution. The convolution in time domain of two 

signal x and h is perform by multiplying its discrete fourier transform and the converting it in time domain by 

inverse discrete fourier transform. The equation of DFT is the summation of discrete signal multiplied by 
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twiddle factor given as: 

 

Where,  is called as twiddle factor.  

For long convolution the FFT is faster method as compare to DFT. Fig. 1. 

 

The same convolution process is done by matrix method as: 

 

The NxM matrix multiplication equation is written as:  

y(0) = h(0)x(0) + h(N-1)x(1) + h(N-2)x(2) + ------------ h(2)x(N-2) + h(1)x(N-1)  

y(1) = h(1)x(0) + h(0)x(1) + h(N-1)x(2) + ------------ h(2)x(N-2) + h(1)x(N-1)  

y(2) = h(2)x(0) + h(1)x(1) + h(0)x(2) + ------------h(4)x(N2) + h(3)x(N-1)  

y(N-2) = h(N-2)x(0) + h(N-3)x(1) + h(N-4)x(2) + ---------- --h(0)x(N-2) + h(N-1)x(N-1) 

 y(N-1) = h(N-1)x(0) + h(N-2)x(1) + h(N-3)x(2) + ---------- --h(1)x(N-2) + h(0)x(N-1)  

Thus circular convolution is obtaining quickly using matrix multiplication approach. 

 
 

c) Linear convolution from circular convolution with zero padding. 
 

We know that linear convolution in time domain results in multiplication in frequency domain and 

vice versa.  Let X(k) and H(k) denote the DFTs of x(n), h(n) respectively. IDFT of Y(k), where Y(k) 

= (X(k)H(k)), is circular convolution of x(n) and h(n) not their linear convolution. So to avoid 

aliasing x(n), h(n) are zero padded to the length  L+M-1 (L, M are lengths of x(n) and h(n), 

respectively) before finding their DFTs. 

 
 

4.3 Algorithm  
 

a) Circular Convolution of two given sequences using summation formula. 

 

1. Read the first input sequence, x[n] and plot. 

2. Read the second input sequence, h[n] and plot 

3. Find the length of x[n] and y[n] , l1 and l2 respectively 

4. Check if l1=l2. Proceed only if equal. 

5. If l1 not equal to l2, zero padding is done to make l1=l2. 
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6. Initialize a loop variable for the number of output points. 

7. For each output sample access the samples of y[n] in cyclic order. 

8. Find the sum of products of x[n] and cyclically folded and shifted h[n] to get circular 

convoluted output. 

9. Display and plot the output. 

 

b) Circular Convolution of two given sequences using matrix method. 

 

1. Read the first input sequence, x[n] and plot. 

2. Read the second input sequence, h[n] and plot 

3. Find the length of x[n] and y[n] , l1 and l2 respectively 

4. Take transpose of the given sequences. 

5. Use convmtx/circshift MATLAB command. 

6. Display and plot the output 

 

c) Linear convolution from circular convolution with zero padding. 

 

1. Read the first input sequence, x[n] and plot. 

2. Read the second input sequence, h[n] and plot 

3. Find the length of x[n] and y[n] , l1 and l2 respectively 

4. Check if l1=l2. Proceed only if equal. 

5. If l1 not equal to l2, zero padding is done to make l1=l2. 

6. Initialize a loop variable for the number of output points. 

7. For each output sample access the samples of y[n] in cyclic order. 

8. Find the sum of products of x[n] and cyclically folded and shifted h[n] to get circular 

convoluted output. 

9. Display and plot the output. 

 

4.4 MATLAB Implementation  
 

a) Circular Convolution of two given sequences using summation formula. 

 

MATLAB recognizes index 1 to be positive maximum. Index 0 is not recognized. Hence in the below 

program wherever y, x and h sequences are accessed, the index is added with +1. the modulo index 

calculation for circular convolution is carried out using the function - MOD    Modulus (signed 

remainder after division). MOD(x, y) is x - y.*floor(x./y) if y ~= 0.  By convention, MOD(x, 0) is x. 

The input x and y must be real arrays of the same size, or real scalars. MOD(x, y) has the same sign as 
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y while REM(x, y) has the same sign as x. MOD(x, y) and REM(x, y) are equal if x and y have the 

same sign, but differ by y if x and y have different signs. 

 

b) Circular Convolution of two given sequences using matrix method. 

 

MATLAB program to find Circular Convolution by matrix multiplication using circshift command or 

we can use convmtx command. 

A = convmtx (h,n) returns the convolution matrix, A, such that the product of A and a vector, x, is the 

convolution of h and x. If h is a column vector of length m, A is (m+n-1)-by-n and the product 

of A and a column vector, x, of length n is the convolution of h and x.  If h is a row vector of 

length m, A is n-by-(m+n-1) and the product of a row vector, x, of length n with A is the  convolution 

of h and x. Convmtx handles edge conditions by zero padding. 

Y = circshift(A,K) circularly shifts the elements in array A by K positions. If K is an integer, 

then circshift shifts along the first dimension of A whose size does not equal 1. If K is a vector of 

integers, then each element of K indicates the shift amount in the corresponding dimension of A.  

Y = circshift(A,K,dim) circularly shifts the values in array A by K positions along dimension dim. 

Inputs K and dim must be scalars. 

 

4.5  Calculation 
 

 

a) Circular Convolution of two given sequences using summation formula. 
 

Example for finding Circular Convolution of two Sequences. 

Let‟s take x (n) = {1, 1, 2, 1} and h(n) = {1, 2, 3, 4} 

 y(0) = x(k) x2(-k) 

= x(0) h(0) + x(1) h(3) + x(2)h(2) + x(3) h(1) 

= 1 + 4 + 6 +2 = 13 

y(1) = x(k) h(1-k) 

= x(0) h(1) + x(1) h(0) + x(2) h(3) + x(3) h(2) 

= 2 + 1 + 8 + 3= 14 

y(2) = x(k) h(2-k) 

= x(0) h(2) + x(1) h(1) + x(2) h(0) + x(3) h(3) 

= 3 + 2 + 2+ 4= 11 

y(3) = x(k) h(3-k) 

= x(0) h(3) + x(1) h(2) + x(2) h(1) + x(3) h(0) 

= 4 + 3 + 4 + 1= 12 

The circular convoluted signal is, 

y(n) = {13, 14, 11, 12} 

 

 
 

https://in.mathworks.com/help/matlab/ref/circshift.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/circshift.html#inputarg_K
https://in.mathworks.com/help/matlab/ref/circshift.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/circshift.html#inputarg_K
https://in.mathworks.com/help/matlab/ref/circshift.html#inputarg_dim
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b) Circular Convolution of two given sequences using matrix method. 

 

c) Linear convolution from circular convolution with zero padding. 

 

x(n)= [ 1     2     1     2     1     2] 

h(n)= [1     2      3    4] 

M= length(x) + length(h)-1 

    = 6 +4  -1  

    =9 

x(n) = [ 1    2    12    12    0    0    0  ] 

h(n)=  [ 1    2     34    0     0    0    0    0 ] 

y(n)= x(n).h(n) 

 

 y(n)= 

1 0 0 0 2 1 1 2 1 

. 

1 

2 1 0 0 0 2 2 1 2 2 

1 2 1 0 0 0 1 2 1 3 

2 1 2 1 0 0 2 1 2 4 

1 2 1 2 1 0 0 2 1 0 

2 1 2 1 2 1 0 0 2 0 

0 2 1 2 1 2 0 0 0 0 

0 0 2 1 2 1 1 0 0 0 

0 0 0 2 1 2 2 1 0 0 

  
 

y(n)= [ 1     4     8     14     16     14     15      10      8] 

 
 

4.6 MATLAB Program:  
 

a) Circular Convolution of two given sequences using summation formula. 
 

clc; 

clear all; 

close all; 

xn=input('enter the first sequence x(n)='); 

hn=input('enter the second sequence h(n)='); 

l1=length(xn); 

l2=length(hn); 

N=max(l1,l2); 

xn=[xn,zeros(1,N-l1)]; 

hn=[hn,zeros(1,N-l2)]; 

for n=0:N-1; y(n+1)=0; for k=0:N-1 

i=mod((n-k),N); 
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y(n+1)=y(n+1)+hn(k+1)*xn(i+1); 

end; 

end; 

disp('circular convolution output‟); 

disp(y); 

subplot(2,2,1); 

stem(xn); 

xlabel('n'); 

ylabel('x(n)'); 

title('plot of h(n)'); 

subplot(2,2,2); 

stem(hn); 

xlabel('n'); 

ylabel('h(n)'); 

title('plot of h(n)'); 

subplot(2,1,2); 

stem(y); 

xlabel('n'); 

ylabel('y(n)'); 

title('circular convolution output'); 

 

b) Circular Convolution of two given sequences using matrix method. 

close all;  

clear all; 

x1=input('Enter the 1st sequence x[n] = '); 

h1=input('Enter the 2nd sequence h[n] = '); 

N1=length(x1); 

N2=length(h1); 

N=max(N1,N2); 

if(N1>N2) 

h1=[h1,zeros(1,N1-N2)];  

else 

x1=[x1,zeros(1,N2-N1)];  

end; 
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x=transpose(x1); h=transpose(h1); temp=h; 

for i=1:N-1; 

temp=circshift(temp,1); 

h=horzcat(h,temp); 

end; 

h 

x 

y=h*x ; 

disp('Circular convolved output y[n] = '); 

y  

subplot(3,1,1); 

stem(x1); xlabel('N-->'); 

ylabel('Amplitude-->');  

title('1st input sequence x[n] '); 

subplot(3,1,2); 

stem(h1); xlabel('N-->'); 

ylabel('Amplitude-->');  

title('2nd input sequence h[n]'); 

subplot(3,1,3); 

stem(y); xlabel('N-->'); 

ylabel('Amplitude-->'); 

title('Circular convolved output y[n]'); 

 

c) Linear convolution from circular convolution with zero padding. 
 

clc; 

close all; 

clear all; 

x1=input('enter the first sequence='); 

x2=input('enter the second sequence='); 

n=input('enter the no of points of the dft='); 

subplot(3,1,1); 

stem(x1,'filled'); 

title('plot of first sequence'); 

subplot(3,1,2); 
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stem(x2,'filled'); 

title('plot of second sequence'); 

n1=length(x1); 

n2=length(x2); 

m=n1+n2-1; 

x=[x1 zeros(1,n2-1)]; 

y=[x2 zeros(1,n1-1)]; 

x_fft=fft(x,m); 

y_fft=fft(y,m); 

dft_xy=x_fft.*y_fft 

y=ifft(dft_xy,m); 

disp('the circular convolution result is'); 

disp(y); 

subplot(3,1,3); 

stem(y,'filled'); 

title('plot of circularly convoluted sequence'); 

 

4.7 Output Waveforms 
 

a) Circular Convolution of two given sequences using summation formula. 
 

Input: 

enter the first sequence x(n)=[1 1 2 1] 

enter the second sequence h(n)=[1 2 3 4] 
 
 

Output: 

circular convolution output 

13   14    11    12 
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b) Circular Convolution of two given sequences using matrix method. 

Output 

Enter the 1st sequence x[n] = [1 2 3 4] 

Enter the 2nd sequence h[n] = [3 5 2 1] 

h = 

3 1 2 5 

5 3 1 2 

2 5 3 1 

1 2 5 3 

x = 

1 

2 

3 

4 

Circular convolved output y[n] = 

y = 

31 

22 

25 

32 

 

 

 
 

c) Linear convolution from circular convolution with zero padding. 
 

Input: 

enter the first sequence=[1 2 1 2 1 2] 

enter the second sequence=[1 2 3 4] 

enter the no of points of the dft=9 
 

Output: 

the circular convolution result is 

    1.0000    4.0000    8.0000   14.0000   16.0000   14.0000   15.0000   10.0000    8.0000 
 

 
 

4.8 Results 
 

 

4.9 Conclusion 
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Experiment 5 
 

5.0 Computation of N point DFT of a given sequence and to plot magnitude and phase 

spectrum. 
 
 

5.1 Aim 

 

To compute N-point DFT of a given sequence and to plot magnitude and phase spectrum. 

 

5.2 Theory 

 

Discrete Fourier Transform is a powerful computation tool which allows us to evaluate the Fourier 

Transform X (e
jw

) on a digital computer or specially designed digital hardware. Since X(e
j
 ) is 

continuous and periodic, the DFT is obtained by sampling one period of the Fourier Transform at a 

finite number of frequency points. Apart from determining the frequency content of a signal, DFT is 

used to perform linear filtering operations in the frequency domain. 
 
The sequence of N complex numbersx0... xN−1 is transformed into the sequence of N complex numbers 
X0... XN−1 by the DFT according to the formula:  

 

k = 0,1, …. N-1 

 

5.3 Algorithm 

 

1. Enter the number of points N 
 
2. Enter the input sequence elements x[n] 
 
3. Create a vector for sample index n 
 
4. Calculate DFT using built in function FFT 
 
5. Plot the magnitude and phase spectrum 

 

5.4 MATLAB Implementation 

 

MATLAB has an inbuilt function „FFT‟ which computes the Discrete Fourier transform. FFT(X) is 

the discrete Fourier transform (DFT) of vector X. For length N input vector x, the DFT is a length N 

vector X, with elements N. FFT(X,N) is the N-point FFT, padded with zeros if X has less than N 

points and truncated if it has more. The magnitude spectrum is computed using the function ABS    

Absolute value. ABS(X) is the absolute value of the elements of X. When X is complex, ABS(X) is 

the complex modulus (magnitude) of the elements of X. The phase spectrum is computed using the 

function ANGLE Phase angle. ANGLE (H) returns the phase angles, in radians, of a matrix with 

complex elements. 
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5.5 MATLAB Program: Computation of N point DFT of a given sequence and to plot 

magnitude and phase spectrum. 
 

clc; 

close all; 

clear all; 

x=input('enter the sequence= '); 

N=input('enter the no of dft points= '); 

xk=fft(x,N); 

disp('N point DFT of the sequence is=') 

disp(xk); 

n=0:1:N-1; 

figure(1); 

stem(n,abs(xk)); 

disp('magnitude of the sequence is=') 

disp(abs(xk)); 

xlabel('k'); 

ylabel('|xk|'); 

title('magnitude spectrum'); 

figure(2); 

stem(angle(xk)); 

disp('phase value of the sequence is=') 

disp(angle(xk)); 

xlabel('k'); 

ylabel('angle (xk)'); 

title('phase spectrum'); 

figure(3); 

n1=0:1:length(x)-1; 

stem(n1,x); 

xlabel('n'); 

ylabel('x[n]'); 

title('original signal'); 

 

 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 30 

 
  

 

5.6 Calculation 

 

EXAMPLE: 
 

Let us assume the input sequence x[n] = [1 1 0 0]  

We have, 
  

k = 0,1, …. N-1 
 

For k = 0,  
 
 
 
 
 

X(0) = x(0) + x(1) + x(2) + x(3) 
 

X(0) = 1+1+0+0 = 2 
 

For k = 1, 

 

 

 

X(1) = 1 – j 
 

For k = 2  
 
 
 
 
 

X (2) = x(0) + x(1) e
-j
 + x(2) e

-j2
 + x(3) e

-j3
  

X (2) = 1 + cos – jsin 
 

X (2) = 1-1 = 0 
 

For k = 3,  
 
 
 

= x (0) + x (1) e
-j3 /2

 + x (2) e
-j3

 + x (3) e
-j9 /2 

X (3) = 1 + cos (3 /2) - jsin (3 /2) 
 

X (3) = 1 + j 
 

The DFT of the given sequence is, 
 

X (k) = {2, 1-j, 0, 1+j} 
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5.7 Output Waveforms 
 

Input:  

enter the sequence= [1 1 0 0] 

enter the no of dft points= 4 

Output: 

N point DFT of the sequence is= 

   2.0000             1.0000 - 1.0000i        0             1.0000 + 1.0000i 

Magnitude of the sequence is= 

    2.0000    1.4142         0    1.4142 

Phase value of the sequence is= 

         0   -0.7854         0    0.7854 

 

  

 
 

 
 

5.8 Results  

 

 

5.9 Conclusion 
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Experiment 6 
 

6.0  Linear and circular convolution by DFT and IDFT method 

 

6.1 Aim 

To write MATLAB program to verify linear and circular convolution by DFT and IDFT method. 
 

6.2 Theory 

Circular convolution is another way of finding the convolution sum of two input signals. It resembles 

the linear convolution, except that the sample values of one of the input signals is folded and right 

shifted before the convolution sum is found. Also note that circular convolution could also be found 

by taking the DFT of the two input signals and finding the product of the two frequency domain 

signals. The Inverse DFT of the product would give the output of the signal in the time domain which 

is the circular convolution output. The two input signals could have been of varying sample lengths. 

But we take the DFT of higher point, which ever signals levels to. For e.g. If one of the signal is of 

length 256 and the other spans 51 samples, then we could only take 256 point DFT. So the output of 

IDFT would be containing 256 samples instead of 306 samples, which follows N1+N2 – 1 where N1 

& N2 are the lengths 256 and 51 respectively of the two inputs. Thus the output which should have 

been 306 samples long is fitted into 256 samples. The 256 points end up being a distorted version of 

the correct signal. This process is called circular convolution. Circular convolution is explained using 

the following example.  

 

The two sequences are x1 (n) = {2,1,2,1}  

                                     x2 (n) = {1,2,3,4 }   

Each sequence consists of four nonzero points. For purpose of illustrating the operations involved in 

circular convolution it is desirable to graph each sequence as points on a circle. Thus the sequences x1 

(n) and x2 (n) are graphed as illustrated in the fig. We note that the sequences are  graphed in a 

counterclockwise direction on a circle. This establishes the reference direction in rotating one of 

sequences relative to the other. Now, y (m) is obtained by circularly convolving x (n) with h (n). 
 

6.3 Algorithm 
 

1. Give input sequence x[n].  

2. Give impulse response sequence h[n].  

3. Find the Circular Convolution and linear convolution y[n] using the DFT method.  

4. Plot x[n],h[n],y[n]. 
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6.4 Calculation 
 

 

Circular Convolution 

x[n]= [1 2 3 4]  y[n]= [3 5 2 1] 

 

x(k)= 

 

h(k)= 

 
 

x(n)= x(k) * h(k) 
 

y(n)= 
1 

4 

 
 

y1(n)=  110+6+1 0j-2  -6+10j =128/4=31 

y2(n)= 110+6j+10 (-1) -2  -6j + 10(-1)=88/4=22 

y3(n)= 110-6-10j+2-6+10j=100/4=25 

y4(n)=110-6j+10-2+6j+10=128/4=32 

 

y(n)= 
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6.5  MATLAB Program: linear  

convolution using DFT and IDFT 

 

clc; 

close all; 

clear all; 

x1=input('enter the first sequence='); 

x2=input('enter the second sequence='); 

n=input('enter the no of points of the dft='); 

subplot(3,1,1); 

stem(x1,'filled'); 

title('plot of first sequence'); 

subplot(3,1,2); 

stem(x2,'filled'); 

title('plot of second sequence'); 

n1=length(x1); 

n2=length(x2); 

m=n1+n2-1; 

x=[x1 zeros(1,n2-1)]; 

y=[x2 zeros(1,n1-1)]; 

x_fft=fft(x,m); 

y_fft=fft(y,m); 

dft_xy=x_fft.*y_fft 

y=ifft(dft_xy,m); 

disp('the linear convolution result is'); 

disp(y); 

subplot(3,1,3); 

stem(y,'filled'); 

title('plot of linearly convoluted sequence'); 

6.6  MATLAB Program: circular  

convolution using DFT and IDFT 

 

clc; 

close all; 

clear all; 

x=input('enter input x(n)= '); 

m=length(x) 

h=input('enter input h(n)= '); 

n=length(h) 

subplot(3,2,1); 

stem(x); 

title('input sequence x(n)'); 

xlabel('----->n'); 

ylabel('----->amplitude'); 

grid; 

subplot(3,1,2); 

stem(h); 

title('input sequence h(n)'); 

xlabel('----->n'); 

ylabel('----->amplitude'); 

grid; 

disp('circular convolution of x(n) &h(n) '); 

y1=fft(x,n); 

y2=fft(h,n); 

y3=y1.*y2; 

y=ifft(y3,n); 

disp(y); 

subplot(3,1,3); 

stem(y); 

title('circular convoluted output'); 

xlabel('----->n'); 

ylabel('----->amplitude'); 

grid; 
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6.7 Output Waveforms 
 

A) For linear convolution: 

Input: 

enter the first sequence=[1 5 10 12] 

enter the second sequence=[5 10] 

enter the no of points of the dft=5 
 

Output: 

the linear convolution result is 

 5.0000   35.0000 100.0000 160.0000 120.0000 

 

 

 

 
 

B) For circular convolution: 

Input: 

enter input x(n)= [1 2 3 4] 

m =  4 

enter input h(n)= [3 5 2 1] 

n =  4 
 

Output:  

circular convolution of x(n) & h(n)  

 31    22    25    32 

 

 
 

 

 

6.8 Results  
 
 

 

 

 

 

 

 

 

 

 

 

6.9 Conclusion 
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Experiment 7 

 

7.0 Solving a given difference equation  
 

 

7.1 Aim 
 

To obtain the impulse response/step response of a system described by the given difference equation. 

 

7.2 Theory 

 

 A difference equation with constant coefficients describes a LTI system. For example the 

difference equation y[n] + 0.8y[n-2] + 0.6y[n-3] = x[n] + 0.7x[n-1] + 0.5x[n-2] describes a LTI 

system of order 3. The coefficients 0.8, 0.7, etc are all constant i.e., they are not functions of time 

(n). The difference equation y[n]+0.3ny[n-1]=x[n] describes a time varying system as the 

coefficient 0.3n is not constant. 

 The difference equation can be solved to obtain y[n], the output for a given input x[n] by 

rearranging as y[n] = x[n] + 0.7x[n-1]+0.5x[n-2]- 0.8y[n-2]- 0.6y[n-3] and solving. 

 The output depends on the input x[n] 

  With x[n]= δ[n], an impulse, the computed output y[n] is the impulse response.  

 If x[n]=u[n], a step response is obtained.  

 If x[n] = cos(wn) is a sinusoidal sequence, a steady state response is obtained (wherein y[n] is of 

the same frequency as x[n], with only an amplitude gain and phase shift-refer Fig.7.3).  

 Similarly for any arbitrary sequence of x[n], the corresponding output response y[n] is computed. 

 The difference equation containing past samples of output, i.e., y[n-1], y[n-2], etc leads to a 

recursive system, whose impulse response is of infinite duration (IIR). For such systems the 

impulse response is computed for a large value of n, say n=100 (to approximate n=∞). The 

MATLAB function filter is used to compute the impulse response/ step response/ response to any 

given x[n]. Note: The filter function evaluates the convolution of an infinite sequence (IIR) and 

x[n], which is not possible with conv function (remember conv requires both the sequences to be 

finite). 

 The difference equation having only y[n] and present and past samples of input (x[n], x[n-k]), 

represents a system whose impulse response is of finite duration (FIR). The response of FIR 

systems can be obtained by both the „conv‟ and „filter‟ functions. The filter function results in a 

response whose length is equal to that of the input x[n], whereas the output sequence from conv 

function is of a longer length (xlength + hlength-1). 
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7.3 MATLAB Implementation 
 

MATLAB has an inbuilt function „filter‟ to solve difference equations numerically, given the input 

and difference equation coefficients (b, a).  

y=filter (b, a, x) 

Where x is the input sequence, y is the output sequence which is of same length as x. 

 

7.4 Algorithm 
 

1. Input the two sequences as a and b representing the coefficients of y and x. 

2. If IIR response, then input the length of the response required (say 100, which can be made 

constant). 

3. Compute the output response using the „filter‟ command. 

4. Plot the input sequence & impulse response (and also step response, etc if required). 
 

7.5 Calculation 
 

The difference equation is given by 

y(n) = x(n)+0.7x(n-1)+0. 5x(n-2)-0.8y(n-2)-0.6y(n-3) 

y(z)+0.8z
-2

+0.6z
-3

 y(z)=x(z)+0.7z
-1

 x(z) + 0.5 z
-2

 x(z) 

y(z) [1+0.8z
-2

+0.6z
-3

=x(z)+(1+0.7z
-1

+0.5z
-2

)] 

H(z)= y(z)   

           x(z) 

       =  (1+0.7z
-1

+0.5z
-2

) 

           (1+0.8z
-1

+0.6z
-3

) 
 

 

H(z)= 1+0.7z
-1

 -0.3z
-2

 -1.167z
-3 

h(h)= [1   0.7    -0.3   -1.167] 
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7.6 MATLAB Program: Solving a given difference equation 

 

clc; 

close all; 

clear all; 

N=input('enter the length of response= '); 

b=input('enter the coefficient of x(n)...= '); 

a=input('enter the coefficient of y(n)...= '); 

%to find the impulse response 

figure(1); 

X=[1,zeros(1,N-1)]; 

n=0:1:N-1; 

h=filter(b,a,X); 

disp('impulse response of filter= '); 

disp(h); 

subplot(2,1,1); 

stem(n,X); 

title('impulse input'); 

xlabel('n'); 

ylabel('x(n)'); 

subplot(2,1,2); 

stem(n,h); 

title('impulse response'); 

xlabel('n'); 

ylabel('h(n)'); 

%to find the step response 

figure(2); 

X=[ones(1,N)]; 

n=0:1:N-1; 

h=filter(b,a,X); 

disp('step response of filter= '); 

disp(h); 

subplot(2,1,1); 

stem(n,X); 

title('step input'); 

xlabel('n'); 

ylabel('x(n)'); 

subplot(2,1,2); 

stem(n,h); 

title('step response'); 

xlabel('n'); 

ylabel('h(n)'); 

%to find the exponential response 

figure(3); 

n=0:1:N-1; 

X=2.^n; 

h=filter(b,a,X); 

disp('exponential response of filter= '); 

disp(h); 

subplot(2,1,1); 

stem(n,X); 

title('exponnetial input'); 

xlabel('n'); 

ylabel('x(n)'); 

subplot(2,1,2); 

stem(n,h); 

title('expontial response'); 

xlabel('n'); 

ylabel('h(n)'); 

%to find the steady response 

figure(4); 

n=0:1:N-1; 

X=cos(0.5*pi*n); 

h=filter(b,a,X); 

disp('steady state response of filter= '); 

disp(h); 

subplot(2,1,1); 

stem(n,X); 

title('steady input'); 

xlabel('n'); 

ylabel('x(n)'); 

subplot(2,1,2); 

stem(n,h); 

title(' steady response'); 

xlabel('n'); 

ylabel('h(n)'); 
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7.7 Output Waveforms 

Input: 

enter the length of response= 10 

enter the coefficient of x(n)...= [1 0.7 0.5] 

enter the coefficient of y(n)...= [1 0 0.8 0.6] 

Output: 

Impulse response of filter=  

1.0000    0.7000   -0.3000   -1.1600   -0.1800    

1.1080    0.8400   -0.7784   -1.3368     0.1187 

 

Exponential response of filter=  1.0000    2.7000    

5.1000    9.0400   17.9000   36.9080   74.6560  

148.5336  295.7304    591.5795 

 

Step response of filter=  

  1.0000    1.7000    1.4000    0.2400    0.0600    

1.1680    2.0080    1.2296   -0.1072       0.0115 

 

Steady state response of filter=  

    1.0000    0.7000   -1.3000   -1.8600    1.1200    

2.9680   -0.2800   -3.7464   -1.0568     3.8651 

 

 

7.8 Result 
 

 

 

 
 

7.9 Conclusion 
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Experiment 8 
 

8.0  Calculation of DFT and IDFT by FFT 

       

8.1 Aim 
 

To write a MATLAB program for computation of DFT and IDFT using Direct and FFT method 

 

8.2 Theory 
 

DFT:  

Discrete Fourier Transform (DFT) is used for performing frequency analysis of discrete time signals. 

DFT gives a discrete frequency domain representation whereas the other transforms are continuous in 

frequency domain. The N point DFT of discrete time signal x[n] is given by the equation.  

 
The inverse DFT allows us to recover the sequence x[n] from the frequency samples    

 

 
FFT:  

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform 

(DFT) and its inverse. FFTs are of great importance to a wide variety of applications, from digital 

signal processing and solving partial differential equations to algorithms for quick multiplication of 

large integers. Evaluating the sums of DFT directly would take O(N 2) arithmetical operations. An 

FFT is an algorithm to compute the same result in only O(N log N) operations. In general, such 

algorithms depend upon the factorization of N, but there are FFTs with O(N log N) complexity for all 

N, even for prime N. Since the inverse DFT is the same as the DFT, but with the opposite sign in the 

exponent and a 1/N factor, any FFT algorithm can easily be adapted for it as well. 

 

8.3 Algorithm 
 

1. Get the input sequence  

2. Find the DFT of the input sequence using direct equation of DFT. 

3. Find the IDFT using the direct equation.  

4. Find the FFT of the input sequence using MATLAB function.  

5. Find the IFFT of the input sequence using MATLAB function.   

6. Display the above outputs using stem function 
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8.4 Calculation 
 

x(n)=[1 1 1 1 1 1 0 0 ] 
 

this equation is formulated in the matrix form by equation 

XN= [Wn] xN 

with N=8 x8=[W8]x8 
 

 x8= 

 

and  x8= 

 

= 

 
 

 

= 
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=  

 

  = 6    -0.7071-1.7071i     1.0000-1.0000i     0.707i+0.2929i   0  0.7071-0.292i  1.0000+1.0000i                          
 

    -0.7071+1.7071i 
 

 

8.5  MATLAB Program: Calculation of DFT and IDFT by FFT 
 
 

%direct dft 

clc; 

close all; 

clear all; 

xn=input('enter input'); 

N=length(xn); 

n=0:N-1; 

k=0:N-1; 

wn=exp((-1i*2*pi*n'*k)/N); 

xf=wn*xn' 

subplot(2,1,1); 

figure (1); 

stem(abs(xf)); 

title('dft magnitude response'); 

ylabel('magnitude'); 

xlabel('frequence'); 

%direct idft 

wN=exp((1i*2*pi*n'*k)/N); 

pn=wN*xf/N 

 

subplot(2,1,2); 

stem(abs(pn)); 

title('idft magnitude response'); 

ylabel('magnitude'); 

xlabel('time'); 

%fft mathod 

figure(2); 

xp=fft(xn,N) 

subplot(2,1,1); 

stem(abs(xp)); 

title('fft magnitude response'); 

ylabel('magnitude'); 

xlabel('frequency'); 

%ifft method 

xw=ifft(xp,N) 

subplot(2,1,2); 

stem(abs(xw)); 

title('ifft magnitude response'); 

ylabel('magnitude') 

xlabel('time'); 
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8.6 Output Waveforms 
 

Input: 

enter input [1 1 1 1 1 1 0 0 ] 

 

Output: 
 

xf= 6.0000     -0.7071 - 1.7071i     1.0000 - 1.0000i     0.7071 + 0.2929i      0 - 0.0000i                                    

0.7071 - 0.2929i   1.0000 + 1.0000i    -0.7071 + 1.7071i 

pn =   1.0000 - 0.0000i      1.0000        1.0000 - 0.0000i    1.0000 - 0.0000i   1.0000 + 0.0000i 

           1.0000 + 0.0000i    0.0000 + 0.0000i     0.0000 + 0.0000i 

xp =   6.0000            -0.7071 - 1.7071i   1.0000 - 1.0000i   0.7071 + 0.2929i        0           

          0.7071 - 0.2929i   1.0000 + 1.0000i  -0.7071 + 1.7071i 

xw =       1     1     1     1     1     1     0     0 

       
 

 

  

 

8.7 Results  
  

 

 

 

 

 

 

 

 

8.8 Conclusion 
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Experiment 9 
 

9.0 Design and implementation of IIR filter to meet given specifications. 

 

9.1 Aim 
 

Design and implementation of IIR filter to meet given specifications. 
 

9.2 Theory 

 

Basically digital filter is a linear time-invariant discrete time system. 
 
Infinite Impulse Response (IIR) filter: IIR filters are of recursive type, whereby the present output 

sample depends on the present input, past input samples and output samples. The impulse response 

h(n) for a realizable filter is,h(n) = 0 for n 0. And for stability, it must satisfy the condition, 
 
 
 
 
 
 
There are two methods of stating the specifications as illustrated in previous program. In the first 

program, the given specifications are directly converted to digital form and the designed filter is also 

implemented. In the last two programs the Butterworth and chebyshev filters are designed using 

bilinear transformation (for theory verification). 

Method I: Given the order N, cutoff frequency fc, sampling frequency fs and the IIR filter type 

(Butterworth, cheby1, cheby2). 

 Step 1: Compute the digital cut-off frequency Wc (in the range -π < Wc < π, with π corresponding 

to fs/2) for fc and fs in Hz. For example let fc=400Hz, fs=8000Hz 

Wc = 2*π* fc / fs = 2* π * 400/8000 = 0.1* π radians 

For MATLAB the Normalized cut-off frequency is in the range 0 and 1, where 1 corresponds to 

fs/2 (i.e., fmax)). Hence to use the MATLAB commands 

wc =  fc / (fs/2) = 400/(8000/2) = 0.1 

Note: if the cut off frequency is in radians then the normalized frequency is computed as wc = Wc 

/ π   

 Step 2: Compute the Impulse Response [b,a] coefficients of the required IIR filter and the response 

type (low pass, band pass, etc) using the appropriate butter, cheby1, cheby2 command. For 

example given a Butterworth filter, order N=2, and a high pass response, the coefficients [b,a] of 

the filter are computed using the MATLAB inbuilt command „butter‟ as [b,a] =butter(N, wc , 

'high'); 
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Method 2:  

Given the pass band (Wp in radians) and Stop band edge (Ws in radians) frequencies, Pass band ripple 

Rp and stop band attenuation As. 

 Step 1: Since the frequencies are in radians divide by π to obtain normalized frequencies to get 

Wp=Wp/pi and ws=Ws/pi 

 If the frequencies are in Hz (note: in this case the sampling frequency should be given), then 

obtain normalized frequencies as wp=fp/(fs/2), ws=fstop/(fs/2), where fp, fstop and fs are the 

passband, stop band and sampling frequencies in Hz  

 Step 2: Compute the order and cut off frequency as  

[N, wc] = BUTTORD(wp, ws, Rp, Rs) 

 Step 3: Compute the Impulse Response [b,a] coefficients of the required IIR filter and the response 

type as [b,a] =butter(N, wc , 'high'); 

 

IMPLEMENTATION OF THE IIR FILTER 

1. Once the coefficients of the IIR filter [b,a] are obtained, the next step is to simulate an input 

sequence x[n], say input of 100, 200 & 400 Hz (with sampling frequency of fs), each of 20/30 

points. Choose the frequencies such that they are >, < and = to fc. 

2. Filter the input sequence x[n] with Impulse Response, to obtain the output of the filter y[n] using 

the „filter‟ command. 

3. Infer the working of the filter (low pass/ high pass, etc). 

 

9.3 MATLAB Implementation 
 

 BUTTORD Butterworth filter order selection. [N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the 

order N of the lowest order digital Butterworth filter that loses no more than Rp dB in the pass 

band and has at least Rs dB of attenuation in the stop band.  Wp and Ws are the pass band and stop 

band edge frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For 

example, 

Low pass:    Wp = .1,      Ws = .2     High pass:   Wp = .2,      Ws = .1 

Band pass:   Wp = [.2 .7], Ws = [.1 .8]   Band stop:   Wp = [.1 .8], Ws = [.2 .7] 

 BUTTORD also returns Wn, the Butterworth natural frequency (or, the "3 dB frequency") to use 

with BUTTER to achieve the specifications.   [N, Wn] = BUTTORD (Wp, Ws, Rp, Rs,‟s‟) does 

the computation for an analog filter, in which case Wp and Ws are in radians/second. When Rp is 

chosen as 3 dB, the Wn in BUTTER is equal to Wp in BUTTORD.   

 BUTTER Butterworth digital and analog filter design. [B,A] = BUTTER (N,Wn) designs an Nth 

order low pass digital Butterworth filter and returns the filter coefficients in length N+1 vectors B 
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(numerator) and A (denominator). The coefficients are listed in descending powers of z. The cutoff 

frequency Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. If Wn is a 

two-element vector, Wn = [W1 W2], BUTTER returns an order 2N band pass filter with pass band 

W1 < W < W2.    [B,A] = BUTTER (N, Wn, 'high') designs a high pass filter. [B,A] = BUTTER 

(N, Wn, 'stop') is a band stop filter if Wn = [W1 W2].  BUTTER (N, Wn, 's'), BUTTER(N, Wn, 

'high','s') and BUTTER(N, Wn, 'stop', 's') design analog Butterworth filters.  In this case, Wn is in 

[rad/s] and it can be greater than 1.0. 
 

9.4 Algorithm 
 

1. Get the order of the filter 
 

2. Find the filter coefficients 
 

3. Plot the magnitude response 

 

9.5 Example with Calculation 
 

1. Let‟s design an analog Butterworth low pass filter. 
 

2. Steps to design an analog Butterworth low pass filter. 
 

3. Get the pass band and stop band edge frequencies 

4. Get the pass band and stop band ripples 

5. Get the sampling frequency 

6. From the given specifications find the order of the filter N. 

7. Round off it to the next higher integer. 

8. Find the transfer function H(s) for  c = 1rad/sec for the value of N. 

9. Calculate the value of cutoff frequency  c 

10. Find the transfer function Ha(s) for the above value of c by substituting s (s/ c) in H(s). 

Design: step 1:  
 
 
 
 
 
 
 

 

Step 2: T=1  
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Step 3: order of filter  
 
 
 
 
 
 
 

 

Step 4: cut off frequency  
 
 
 
 
 
 
 
 

 

Step 5: poles  
 
 
 

Where K=0 to N-1 

Therefore   
 
 
 
 
 
 
 
 
 
 
 
 

Step 6: conversion of analog to digital filter using bilinear transformation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let‟s design an analog Chebyshev filter. 
 

Step 1:  
 
 

rad 
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Step 2: T=1  
 
 
 
 
 

 
 
 
 
 

 

Step 3: order of filter  
 
 
 
 
 
 
 
 
 

 

Step 4: cut off frequency 

 

 

  
 

Step 5: poles  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore   
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Step 6: analog to digital conversion  
 
 
 
 
 
 
 
 
 
 

9.6 MATLAB Program: Design and Implementation of IIR filter to meet given 

specifications. (Butterworth Filter) 
 

1. Butterworth LPF 

%the specifications 

clc; 

clear all; 

close all; 

alphap=3; 

alphas=15; 

fp=500; 

fs=750; 

f=2000; 

omp=2*fp/f; 

oms=2*fs/f; 

%to find cut off frequency & order of the filter 

[N,Wn]=buttord(omp,oms,alphap,alphas) 

disp('order of the filter n ='); 

disp(N); 

disp('cut off frequency Wn= '); 

disp(Wn); 

 

%system function of the filter 

[b,a]=butter(N,Wn) 

w=0:0.01:pi; 

[h,om]=freqz(b,a,w,'whole'); 

m=abs(h); 

an=angle(h); 

subplot(2,1,1); 

plot(om/pi,20*log(m)); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(om/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency'); 

% to convert analog filter to digital filter 

% using bilinear transformation 

[bz,az]=bilinear(b,a,f); 

Output: 

N = 2 

Wn = 0.5083 

order of the filter n = 2 

cut off frequency Wn=  0.5083 
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b =  0.3005    0.6011    0.3005 

a = 1.0000    0.0304    0.1717 

 

 

2. Butterworth HPF 

%the specifications 

clc; 

clear all; 

close all; 

alphap=3; 

alphas=15; 

fp=500; 

fs=750; 

f=2000; 

omp=2*fp/f; 

oms=2*fs/f; 

%to find cut off frequency & order of the filter 

[N,Wn]=buttord(omp,oms,alphap,alphas) 

disp('order of the filter n ='); 

disp(N); 

disp('cut off frequency Wn= '); 

disp(Wn); 

 

%system function of the filter 

[b,a]=butter(N,Wn,'high') 

w=0:0.01:pi; 

[h,om]=freqz(b,a,w,'whole'); 

m=abs(h); 

an=angle(h); 

subplot(2,1,1); 

plot(om/pi,20*log(m)); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(om/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency'); 

% to convert analog filter to digital filter 

% using bilinear transformation 

[bz,az]=bilinear(b,a,f); 
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Output: 

N =  2 

Wn = 0.5083 

order of the filter n = 2 

cut off frequency Wn=  0.5083 

b =  0.2853   -0.5707    0.2853 

a =  1.0000    0.0304    0.1717 

 

 

3. Butterworth BPF 

clear all; 

alphap=2; 

alphas=20; 

wp=[0.2*pi,0.4*pi]; 

ws=[0.1*pi,0.5*pi]; 

[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=butter(n,wn) 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log(abs(h)); 

an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel(„gain in dB‟); 

xlabel(„normalized frequency‟); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel(„phase in radian‟); 

xlabel(„normalized frequency‟);   
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Output: 

n =    4 

wn =     0.1950    0.4082 

b =     0.0060         0   -0.0240         0    0.0359         0   -0.0240         0    0.0060 

a =     1.0000   -3.8710    7.9699  -10.6417   10.0781   -6.8167    3.2579   -1.0044    0.1670 

 
 

 

4. Butterworth BSF 
 

clear all; 

alphap=2; 

alphas=20; 

wp=[0.2*pi,0.4*pi]; 

ws=[0.1*pi,0.5*pi]; 

[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=butter(n,wn,‟stop‟) 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log(abs(h)); 

 an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel(„gain in dB‟); 

xlabel(„normalized frequency‟); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel(„phase in radian‟); 

xlabel(„normalized frequency‟);   

 

 

 

Output: 

n =      4 

wn =     0.1950    0.4082 

b =     0.4086   -2.0201    5.3798   -9.1468   10.8962   -9.1468    5.3798   -2.0201    0.4086 

a =    1.0000   -3.8710    7.9699  -10.6417   10.0781   -6.8167    3.2579   -1.0044    0.1670 
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9.7 MATLAB Program: Design and Implementation of IIR filter to meet given 

specifications. (Chebyshev Filter) 
 

1. Chebyshev type-I LPF 

clear all; 

alphap=2; 

alphas=20; 

wp=0.05*pi; 

ws=0.25*pi; 

[n,wn]=cheb1ord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=cheby1(n,alphap,wn) 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log10(abs(h)); 

an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency'); 

 

Output: 

N = 2 

Wn = 0.5083 

order of the filter n = 2 

cut off frequency Wn=  0.5083 

b = 0.2853   -0.5707    0.2853 

a = 1.0000    0.0304    0.1717 

n = 2 

wn = 0.0500 

b = 0.0038    0.0076    0.0038 

a = 1.0000   -1.8625    0.8816 
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2. Chebyshev type- II HPF 

clear all; 

alphap=2; 

alphas=20; 

wp=0.05*pi; 

ws=0.25*pi; 

[n,wn]=cheb2ord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=cheby2(n,alphas,wn, 'high') 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log10(abs(h)); 

an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency'); 

 

Output: 

N = 2 

Wn = 0.5083 

order of the filter n = 2 

cut off frequency Wn=  0.5083 

b = 0.2853   -0.5707    0.2853 

a = 1.0000    0.0304    0.1717 

n = 2 

wn = 0.0500 

b = 0.0038    0.0076    0.0038 

a = 1.0000   -1.8625    0.8816 

n = 2 

wn = 0.2500 

b = 0.1047   -0.1024    0.1047 

a = 1.0000   -1.5055    0.6125 

n = 2 

wn = 0.2500 

b = 0.3502   -0.5897    0.3502 

a = 1.0000   -0.0917    0.1984 
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3. Chebyshev type- I BPF 

clear all; 

alphap=3; 

alphas=20; 

wp=[0.2*pi,0.4*pi]; 

ws=[0.1*pi,0.5*pi]; 

[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=cheby1(n,alphap,wn) 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log(abs(h)); 

an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency');   

 

Output: 

n =      4 

wn =     0.1950    0.4082 

b =      0.0017         0   -0.0067         0    0.0101         

0   -0.0067         0    0.0017 

a =     1.0000   -4.3974   10.5070  -16.3549   

18.1728  -14.5121    8.2671   -3.0636    0.6200 

 
 

 

4. Chebyshev type- II BSF 

clear all; 

alphap=2; 

alphas=20; 

wp=[0.2*pi,0.4*pi]; 

ws=[0.1*pi,0.5*pi]; 

[n,wn]=cheb2ord(wp/pi,ws/pi,alphap,alphas) 

[b,a]=cheby2(n,alphas,wn,'stop') 

w=0:0.01:pi; 

[h,ph]=freqz(b,a,w); 

m=20*log(abs(h)); 

an=angle(h); 

subplot(2,1,1); 

plot(ph/pi,m); 

grid; 

ylabel('gain in dB'); 

xlabel('normalized frequency'); 

subplot(2,1,2); 

plot(ph/pi,an); 

grid; 

ylabel('phase in radian'); 

xlabel('normalized frequency');   
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Output: 

n =      3 

wn =      0.1000    0.5000 

b =      0.2537   -0.8969    1.6246   -1.9332    1.6246   

-0.8969    0.2537 

a =      1.0000   -2.1790    1.8039   -1.1676    0.9185   

-0.3803    0.0343 

 

 
 
 

9.8 Output of Butterworth filter 

 

Enter the Pass band edge frequency in Hz = 500 
 

Enter the stop band frequency in Hz = 750 
 
Enter the sampling frequency in Hz = 2000 
 
Enter the pass band ripple n db = 3.01 
 
Enter the stop band attenuation in db = 15 
 
Order of the filter N = 2 
 

Normalized cutoff frequency = 2.052 

 
 

9.9 Output of Chebyshev filter 
 

 

Enter the Pass band edge frequency in Hz = 100 
 

Enter the stop band frequency in Hz = 500 
 

Enter the sampling frequency in Hz = 4000 
 

Enter the pass band ripple n db = 2 
 

Enter the stop band attenuation in db = 20 
 

Order of the filter N = 2 
 

Normalized cutoff frequency = 0.1574 
 

 

 

 

 
 

9.10 Results  

 

 

 

9.11 Conclusion 
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Experiment 10 

 

10.0 Design and implementation of FIR filter to meet given specifications (using different 

window techniques). 

 
 

10.1 Aim 
 

Design and implementation of FIR filter to meet given specifications (low pass filter using 

hamming window). 
 

10.2 Theory 
 

There are two types of systems – Digital filters (perform signal filtering in time domain) and spectrum 

analyzers (provide signal representation in the frequency domain). The design of a digital filter is 

carried out in 3 steps- specifications, approximations and implementation. 

DESIGNING AN FIR FILTER (using window method): 

Method I: Given the order N, cutoff frequency fc, sampling frequency fs and the window. 

 Step 1: Compute the digital cut-off frequency Wc (in the range -π < Wc < π, with π  

corresponding to fs/2) for fc and fs in Hz. For example let fc=400Hz, fs=8000Hz Wc = 2*π* fc 

/ fs  = 2* π * 400/8000 = 0.1* π radians. For MATLAB the Normalized cut-off frequency is in 

the range 0 and 1, where 1 corresponds to fs/2 (i.e., fmax)). Hence to use the MATLAB 

commands. wc =  fc / (fs/2) = 400/(8000/2) = 0.1 

 Note: if the cut off frequency is in radians then the normalized frequency is computed as wc = Wc / π   

 Step 2: Compute the Impulse Response h(n) of the required FIR filter using the given Window 

type and the response type (low pass, band pass, etc). For example given a rectangular 

window, order N=20, and a high pass response, the coefficients (i.e., h[n] samples) of the filter 

are computed using the MATLAB inbuilt command „fir1‟ as h =fir1(N, wc , 'high', 

boxcar(N+1)); Note: In theory we would have calculated h[n]=hd[n]×w[n], where hd[n] is the 

desired impulse response (low pass/ high pass, etc given by the sinc function) and w[n] is the 

window coefficients. We can also plot the window shape as stem(boxcar(N)). Plot the 

frequency response of the designed filter h(n) using the freqz function and observe the type of 

response (low pass / high pass /band pass). 

Method 2:  

Given the pass band (wp in radians) and Stop band edge (ws in radians) frequencies, Pass band 

ripple Rp and stopband attenuation As. 

 Step 1: Select the window depending on the stopband attenuation required. Generally if As>40  

dB, choose Hamming window. (Refer table ) 

 Step 2: Compute the order N based on the edge frequencies as 

Transition bandwidth = tb=ws-wp; 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 58 

 
  

N=ceil (6.6*pi/tb); 

 Step 3: Compute the digital cut-off frequency Wc as 

Wc=(wp+ws)/2 

Now compute the normalized frequency in the range 0 to 1 for MATLAB as 

wc=Wc/pi; 

Note: In step 2 if frequencies are in Hz, then obtain radian frequencies (for computation of tb and N)  

as wp=2*pi*fp/fs, ws=2*pi*fstop/fs, where fp, fstop and fs are the passband, stop band and sampling 

frequencies in Hz  

 Step 4: Compute the Impulse Response h(n) of the required FIR filter using N, selected 

window, type of response(low/high,etc) using „fir1‟ as in step 2 of method 1. 

IMPLEMENTATION OF THE FIR FILTER 

1. Once the coefficients of the FIR filter h[n] are obtained, the next step is to simulate an input 

sequence x[n], say input of 100, 200 & 400 Hz (with sampling frequency of fs), each of 20/30 

points. Choose the frequencies such that they are >, < and = to fc. 

2. Convolve input sequence x[n] with Impulse Response, i.e., x (n)*h (n) to obtain the output of 

the filter y[n]. We can also use the „filter‟ command. 

3. Infer the working of the filter (low pass/ high pass, etc). 

10.3 Algorithm 
 

1. Get the sampling frequency 
 
2. Get the pass band frequency 
 
3. Get the stop band frequency 
 
4. Get the pass band ripple and stop band attenuation 
 
5. Select the window suitable for stop band attenuation 
 
6. Calculate the order N based on transition width 
 
7. Find the N window coefficients 
 
8. Find the impulse response of h[n] 

 
 

9. Verify the frequency response of h[n] 

 

10.4 MATLAB Implementation  

FIR1 Function  

B = FIR1(N, Wn) designs an N
th

 order low pass FIR digital filter and returns the filter coefficients in 

length N+1 vector B. The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 

corresponding to half the sample rate.  The filter B is real and has linear phase, i.e., even symmetric 

coefficients obeying B (k) = B(N+2-k), k = 1,2,...,N+1. 
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If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an order N band pass filter with pass 

band W1 < W < W2. B = FIR1 (N, Wn, 'high') designs a high pass filter. B = FIR1 (N, Wn, 'stop') is a 

band stop filter if Wn = [W1 W2]. If Wn is a multi-element vector,          

Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N multiband filter with bands 

0 < W < W1, W1 < W < W2... WN < W < 1. 

FREQZ Digital filters frequency response. [H, W] = FREQZ (B, A, N) returns the N-point complex 

frequency response vector H and the N-point frequency vector W in radians/sample of the filter whose 

numerator and denominator coefficients are in vectors B and A. The    frequency response is evaluated 

at N points equally spaced around the upper half of the unit circle. If N isn't specified, it defaults to 

512. For FIR filter enter A=1 and B = h[n] coefficients. Appropriately choose N as 128, 256, etc 

10.5 Design Method 
 

Here we design a lowpass filter using hamming window. Hamming window function is given 
by, 

 

wH(n) = 0.54 + 0.46 cos ((2 n)/(N-1)                    ; -(N-1)/2≤n≤(N-1)/2 

                                     = 0                                                               ; Otherwise 
 
The frequency response of Hamming window is, 
 

WH(e
jw

) = 0.54[(sin(wN/2))/(sin(w/2)) + 0.23[sin (wN/2 – N/N – 1)/sin (w/2 – /N -1)]+ 0.23[sin 

(wN/2 + N/N – 1)/sin (w/2 + /N – 1)] 
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10.6 MATLAB Program: Design and Implementation of FIR filter using windows 

Techniques.  
 

1. To plot frequency response of band pass filter using Hamming window 
 

clc; 

close all; 

clear all; 

wc1=.4*pi; 

wc2=.65*pi; 

N=7; 

hd=zeros(1,N); 

a=(N-1)/2; 

hna=(wc2-wc1)/pi; 
  

k=1 : 1 : ((N-1)/2); 

n=k-1-((N-1)/2); 

w_han(k)=.5-.5*cos(2*pi*(k-1)/(N-1)); 

hd(k)=(sin(wc2*n)-sin(wc1*n))./(pi*n); 
  

for  s=1 :length(k) 

hn(s)=hd(s)*w_han(s); 

end 

 hn=[hn hna] 

a=(N-1)/2; 

w=0 : pi/16 : pi; 

Hw1=hna*exp(-j*w*a); 

Hw2=0; 
  

for m=1:1:a 

      Hw3= hn(m)*((exp(j*w*(1-m)))+ (exp(-j*w*(1-m+2*a)))); 

      Hw2=Hw2+Hw3; 

end 

Hw=Hw2+Hw1; 

H_mag=abs(Hw) 

plot(w/pi,H_mag,'k'); 

grid; 

title('Magnitude Response','fontweight','b'); 

xlabel('Normalised frequency,\omega/\pi','fontweight','b'); 

ylabel('Magnitude','fontweight','b'); 
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Output: 

1. Frequency response of band pass filter using Hamming window 

hn = 0   -0.0556   -0.0143    0.2500 

H_mag = 0.1102    0.1192    0.1449    0.1836    0.2297    0.2766    0.3176    0.3471    0.3612    0.3583    

0.3396      0.3085    0.2703    0.2313    0.1979    0.1754    0.1675 

 

 

 

2. To plot frequency response of low pass filter using rectangular window. 
 

clc; 

close all; 

clear all; 

wc=.2*pi; 

N=7; 

hd=zeros(1,N); 

a=(N-1)/2; 

hna=wc/pi; 

k=1:1:((N-1)/2); 

n=k-1-((N-1)/2); 

hd(k)=(sin(wc*n))./(pi*n); 

hn(k)=hd(k); 

hn=[hn hna]; 

a=(N-1)/2; 

w=0:pi/16 : pi; 

Hw1=hna*exp(-j*w*a); 

Hw2=0; 

for m=1:1:a 
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    Hw3=hn(m)*((exp(j*w*(1-m)))+(exp(-j*w*(1-m+2*a)))); 

    Hw2=Hw2+Hw3; 

end 

Hw=Hw2+Hw1 

H_mag=abs(Hw) 

plot(w/pi,H_mag,'k'); 

grid; 

title('magnitude Response','fontweight','b'); 

xlabel('Normalised frequency,\omega/\pi','fontweight','b'); 

ylabel('Magnitude','fontweight','b'); 

 

2.  Frequency response of low pass filter using rectangular window. 

Hw = 1.0787   0.8435 - 0.5636i   0.3203 - 0.7733i  -0.1146 - 0.5763i  -0.2276 - 0.2276i 

    -0.0923 - 0.0184i   0.0530 - 0.0219i   0.0660 - 0.0988i   0.0000 - 0.1027i  -0.0225 - 0.0337i 

     0.0270 + 0.0112i   0.0728 - 0.0145i   0.0552 - 0.0552i   0.0086 - 0.0432i   0.0034 + 0.0082i 

     0.0458 + 0.0306i   0.0733 + 0.0000i 

H_mag = 1.0787    1.0145    0.8370    0.5876    0.3219    0.0941    0.0573    0.1188    0.1027     

                0.0406    0.0292  0.0742    0.0781    0.0441    0.0089    0.0551    0.0733 
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3.  To plot frequency response of high pass filter using Hamming window 
 

clc; 

close all; 

clear all; 

wc=.8*pi; 

N=7; 

hd=zeros(1,N); 

a=(N-1)/2; 

hna=1-(wc/pi); 

 k=1 : 1 : ((N-1)/2); 

n=k-1-((N-1)/2); 

w_ham(k)=.54-.46*cos(2*pi*(k-1)/(N-1)); 

hd(k)=(-sin(wc*n))./(pi*n); 

for  s=1 :length(k) 

hn(s)=hd(s)*w_ham(s); 

end 

hn=[hn hna] 

a=(N-1)/2; 

w=0 : pi/16 : pi; 

Hw1=hna*exp(-j*w*a); 

Hw2=0; 

for m=1:1:a 

      Hw3= hn(m)*((exp(j*w*(1-m)))+ (exp(-j*w*(1-m+2*a)))); 

      Hw2=Hw2+Hw3; 

end 

Hw=Hw2+Hw1; 

H_mag=abs(Hw) 

plot(w/pi,H_mag,'k'); 

grid; 

title('Magnitude Response','fontweight','b'); 

xlabel('Normalised frequency,\omega/\pi','fontweight','b'); 

ylabel('Magnitude','fontweight','b'); 
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Output: 

3. To plot frequency response of high pass filter using Hamming window 

hn = -0.0081    0.0469   -0.1441    0.2000 

H_mag = 0.0104    0.0093    0.0060    0.0005    0.0077    0.0198    0.0383    0.0661    0.1062                               

0.1605     0.2290  0.3083    0.3923    0.4723    0.5387    0.5827    0.5981 

 
 

 

4. To plot frequency response of band stop filter using rectangular window 

clc; 

close all; 

clear all; 

wc1=.4*pi; 

wc2=.65*pi; 

N=7; 

 hd=zeros(1,N); 

a=(N-1)/2; 

hna=1-((wc2-wc1)/pi); 

 k=1 : 1 : ((N-1)/2); 

n=k-1-((N-1)/2); 

hd(k)=(sin(wc1*n)-sin(wc2*n))./(pi*n); 

hn(k)=hd(k); 

hn=[hn hna] 

a=(N-1)/2; 

w=0 : pi/16 : pi; 

Hw1=hna*exp(-j*w*a); 

Hw2=0; 
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 for m=1:1:a 

      Hw3= hn(m)*((exp(j*w*(1-m)))+ (exp(-j*w*(1-m+2*a)))); 

      Hw2=Hw2+Hw3; 

end 

Hw=Hw2+Hw1; 

H_mag=abs(Hw) 

plot(w/pi,H_mag,'k'); 

grid; 

title('Magnitude Response','fontweight','b'); 

xlabel('Normalised frequency,\omega/\pi','fontweight','b'); 

ylabel('Magnitude','fontweight','b'); 

 

Output: 
 

4. To plot frequency response of band stop filter using rectangular window 

 

hn = -0.0458    0.2223    0.0191    0.7500 

H_mag = 1.1413    1.1222    1.0647    0.9698    0.8418    0.6909    0.5348    0.3975    0.3054    

                0.2809    0.3364  0.4688    0.6582    0.8705    1.0641    1.1994    1.2479 

 
 
 

10.8 Results  

 

 

 

10.9 Conclusion 
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Experiment 11 
 

11.0 Design and implement FIR filter using frequency sampling method. 

 
 

11.1 Aim 
 

To Design and implement FIR filter using frequency sampling method. 

 

11.2 Theory 
 

A finite impulse response (FIR) filter is discrete linear time invariant system whose output is based on 

the weighted summation of a finite number of input. An FIR transversal filter structure can be 

obtained directly from the equation for discrete time convolution 

 

y(n)= 𝑥 𝑘 ℎ(𝑛 − 𝑘)𝑁−1
𝑘=0     0<n<n-1 

 

In this equation x(k) and y(n) represents the input to & output from the filter at time n h(n-k) is the 

transversal filter coefficient at time n these coefficients are generated by using FDS. 

 

FIR filter is a finite impulse response filter order of the filter should be specified Infinite response in 

truncated to get finite impulse response placing a window of finite length. This type of available are 

rectangular barter, Hamming, Hanning Blackman window etc. This FIR filter is an zero filter. 

 

11.3 Algorithm 
 

1. Get the sampling frequency  

2. Get the passband & stopband frequency 

3. Get the passband ripple & stopband attenuation 

4. Calculate the order N based on transition width 

5. Find the N window coefficient 

6. Verify the frequency response of h(n) 

11.4 MATLAB Implementation 
 

The impulse response of filter hn is find out using ifft function. 

H= freqz(hn,1,w) returns the n complex frequency response vector H of the filter whose coefficients 

are in vector hn. 
 

11.5 Calculation 
 

Design an ideal bandpass filter with a frequency response  

Hd=(e
jw

)= 1 for π/4 <= |w| <= 3π/4 

                  0 otherwise 

Find the values of h(n) for N=11 and plot the frequency response . 

The ideal frequency response of the filter shown in fig 

f 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 67 

 
  

 
Truncating hd(n) to 11 samples we have 

h(n)= hd(n) for |n|<= 5 

         0 otherwise 

The filter coefficients are symmetrical about n=0 satisfying the condition h(n)=h(-n) 

For n=0 

 

 
The transfer function of the filter is  

 

        
The transfer function of the realizable filter is  
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w in 

degree 
0 20 30 45 60 75 90 105 120 135 150 160 180 

𝐻 (e
jw

) 

in db 

-0.1366 0.012 -0.1817 0.5 0.818 1.05 1.1366 1.05 0.818 0.5 0.1817 0.012 -0.1366 

-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.05 -14.8 -38.17 -17.3 

 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 69 

 
  

11.6 MATLAB Program: To design and implement FIR filter using frequency sampling 

method. 
 

 

 

 

 

 

 

%sampling method 

clc; 

clear all; 

close all; 

N=input('enter the order of the filter N='); 

alpha=(N-1)/2; 

Hrk=[ones(1,2),zeros(1,4),ones(1,1)]; 

k1=0:(N-1)/2; 

k2=(N+1)/2:N-1; 
 

theetak=[(-alpha*(2*pi)/N)*k1,(alpha*(2*pi)/N)*(N-k2)]; 

Hk=Hrk.*(exp(i*theetak)); 

w=0:0.01:pi; 

hn=real(ifft(Hk,N)) 

H=freqz(hn,1,w); 

plot(w/pi,20*log10(abs(H))) 

ylabel('magnitude in db'); 

xlabel('normalised frequency'); 

 
 

 

 

 

 

 

 

 

 

 

11.7 Output  

 

Input: 

enter the order of the filter N=7 

Output: 

hn =  -0.1146    0.0793    0.3210    0.4286    0.3210    0.0793   -0.1146 

 

 

11.8 Results  
 

 

 

 

 

 

 

 

11.9 Conclusion 

 

 

 



 
Lab Manual / Semester 6

th
   

 Electrical & Electronics  Engineering Department, Hirasugar Institute of Technology 

 

  
Page 70 

 
  

Experiment 12 

 

12.0 To obtain realization of IIR & FIR filters. 

 

 

12.1 Aim 
 

To obtain realization of IIR & FIR filters. 

 

12.2 Theory 

 

A digital filter transfer can be realized in a variety of ways. There are two types of realization                        

1. Recursive 2. Non Recursive. 

 

1. For recursive realization the current output y(n) is a function of past outputs, past & present  inputs. 

This form corresponds to an Infinite Impulse Response (IIR) digital filter. In this section we discuss 

this type of realization. 

 

2. For non-recursive realization current output sample y(n) is a function of only past and present 

inputs. This form corresponds to a Finite Impulse Response (FIR) digital filter. 

 

 IIR filter can be realized in many forms. They are 

 Direct form –I realization 

 Direct form –II realization 

 Transposed direct form realization 

 Cascade form realization 

 Parallel form realization 

 Lattice-ladder structure 

 

12.3 MATLAB Implementation 

 

The structure are implemented using MATLAB inbuilt functions residuez and tf. 

 

12.4 Calculation 

 

1. Realize the system with difference equation  

y(n)= 
3

4
y(n-1)- 

1

8
y(n-2)+x(n)+ 

1

3
x(n-1) is cascade form 

y(n)= 
3

4
y(n-1)-  

1

8
y(n-2)+x(n)+ 

1

3
x(n-1) 
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Here  

 

& 

 

 

H1(z) can be realized in direct form II as 

 
Similarly H2z can be realized in direct form II as 

 
Cascading the realization of H1(z) & H2(z)  we have  

 
 

 

2. Realize the system given by difference equation  

 

y(n)=-0.1(n-1)+0.72(n-2)_0.7x(n)-0.252x(n-2) in parallel form 
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H1(z) can be realized in direct form II as 

 
H2(z) can be realized in direct form II as 

 
Now the realization of H(z) is shown below 

 
 

12.5 MATLAB Program: To obtain the parallel form realization  
 

%realization of IIR parallel structure 

num=input('enter the coefficients of numerator='); 

den=input('enter the coefficients of denominator='); 

[r1 p1 k1]=residuez(num,den); 

disp('parallel form') 

disp('residues are') 

disp(r1) 

disp('poles are at=') 

disp(p1) 

disp('constant value') 

disp(k1) 
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1. Realization of IIR parallel structure 
 

Input  

enter the coefficients of numerator=[3 8 12 7 2 -2] 

enter the coefficients of denominator=[16 24 24 14 5 1] 

 Output 

parallel form 

residues are 

  -0.4219 + 0.6201i 

  -0.4219 - 0.6201i 

   2.3438            0.3437 - 2.5079i 

   0.3437 + 2.5079i 

 

poles are at= 

  -0.2500 + 0.6614i 

  -0.2500 - 0.6614i 

  -0.5000           

  -0.2500 + 0.4330i 

  -0.2500 - 0.4330i 
 

constant value 

    -2 

 

12.6 MATLAB Program: To obtain the cascade form realization  

 

%realization of FIR cascade structure 

num=input('enter the coefficients of numerator='); 

den=input('enter the coefficients of denominator='); 

[b,a]=eqtflength(num, den); 

[z, p, k]=tf2zp(b,a); 

sos=zp2sos(z,p,k) 

 

12.7 Output  

 

2. Realization of IIR cascade structure 

Input: 

enter the coefficients of numerator=[2 10 23 34 31 16 4] 

enter the coefficients of denominator=[1] 

Output: 

sos = 

    2.0000    6.0000    4.0000    1.0000         0         0 

    1.0000    1.0000    2.0000    1.0000         0         0 

    1.0000    1.0000    0.5000    1.0000         0         0 

 

12.8 Result 

 

 

12.9 Conclusion 

 


